Answer:
Weather is at a specific place and time. Climate is over a period of time.
Explanation:
That is the difference
Answer:
3.3167 moles Of AlCl3
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
3Ca + 2AlCl3 —> 3CaCl2 + 2Al
From the balanced equation above,
2 moles of AlCl3 reacted to produce 2 moles of Al.
Finally, we shall obtained the number of moles of AlCl3 that reacted to produce 3.3167 moles of Al as follow:
From the balanced equation above,
2 moles of AlCl3 reacted to produce 2 moles of Al.
Therefore, 3.3167 moles Of AlCl3 will also react to produce 3.3167 moles of Al.
Thus, 3.3167 moles Of AlCl3 is needed for the reaction.
Answer:
The equation is balanced
Explanation:
NaCl (aq) + AgNO3(aq) ––> AgCl (s) + NaNO3 (aq)
NaCl (aq) + AgNO3 (aq)
Na = 1 , Cl=1 , Ag = 1 , No3= 1
AgCl (s) + NaNO3 (aq)
Ag = 1 , Cl=1 , Na = 1 , No3= 1
<h2>Answer:</h2>
<u>Temperature dependency is responsible for the process that hot water freeze faster than cold water.</u>
<h2>Explanation:</h2>
The effect given above is called Mpemba Effect. According to this idea hot water freezes more quickly as compared to cold water. But until now there is no convincing explanation for this strange phenomenon. One idea is that hot containers make better thermal contact with a refrigerator and so conduct heat more efficiently because a good conductor is good fro the transfer of heat. Another idea about this effect is that warm water evaporates more quickly and since this is an endothermic process, it cools the water making it freeze more quickly.
Answer:
650 mmol.
Explanation:
The equation for the fermentation of one mole of glucose is:
C₆H₁₂O₆ + 2 NAD⁺ + 2 ADP + 2 P i + 2 NADH → 2 EtOH + 2 ATP + 2 NADH + 2 NAD⁺
Since NAD⁺/NADH is used and regenerated, we can eliminate it from the equation:
C₆H₁₂O₆ + 2 ADP + 2 P i → 2 EtOH + 2 ATP
With the equation, we calculate the maximum amount of ethanol that could be obtained theoretically:
1000 mmol C₆H₁₂O₆ ------------ 2000 mmol EtOH
325 mmol C₆H₁₂O₆ ------------- x= 650 mmol EtOH
Therefore, the maximum amount of ethanol that could be produced is 650 mmol.