Below is an attachment containing the solution.
The linear speed of the ladybug is 4.1 m/s
Explanation:
First of all, we need to find the angular speed of the lady bug. This is given by:

where
T is the period of revolution
The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:
T = 1 s
Therefore, the angular speed is

Now we can find the linear speed of the ladybug, which is given by

where:
is the angular speed
r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation
Substituting, we find

Learn more about angular speed:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly
Force exerted by the bullet = mass * acceleration = 0.013 * 850 = 11.05 Newtons.
the rifle exerts same force in opposite direction so we have
11.05 = 3.5 * a
acceleration = 11.05 / 3.5 = 3.16 m /s^-2
Answer:
W = - 118.24 J (negative sign shows that work is done on piston)
Explanation:
First, we find the change in internal energy of the diatomic gas by using the following formula:

where,
ΔU = Change in internal energy of gas = ?
n = no. of moles of gas = 0.0884 mole
Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)
Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K
ΔT = Rise in Temperature = 18.8 K
Therefore,

Now, we can apply First Law of Thermodynamics as follows:

where,
ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)
W = Work done = ?
Therefore,

<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>