Answer:
1) p₀ = 0.219 kg m / s, p = 0, 2) Δp = -0.219 kg m / s, 3) 100%
Explanation:
For the first part, which is speed just before the crash, we can use energy conservation
Initial. Highest point
Em₀ = U = mg y
Final. Low point just before the crash
Emf = K = ½ m v²
Em₀ = Emf
m g y = ½ m v²
v = √ 2 g y
Let's calculate
v = √ (2 9.8 0.05)
v = 0.99 m / s
1) the moment before the crash is
p₀ = m v
p₀ = 0.221 0.99
p₀ = 0.219 kg m / s
After the collision, the car's speed is zero, so its moment is zero.
p = 0
2) change of momentum
Δp = p - p₀
Δp = 0- 0.219
Δp = -0.219 kg m / s
3) the reason is
Δp / p = 1
In percentage form it is 100%
Hello.
The answer is <span>remains the same.
</span>The total amount of energy stays the same because the 1st Law of Thermodynamics states that energy can neither be created nor destroyed, it can only change forms. <span>So the chemical energy is just being converted into heat and light.
</span>
Have a nice day
When a radioactive material is required to be placed in the body, the applications are brachytherapy and radioisotope imaging.
Radioactive materials are elements which has the ability to disintegrate by emitting radioactive substance or radiation. A good example of this is Cobalt-60, Titanium-99 etc.
Brachytherapy is a therapeutic process in which radioactive material is inserted into the body in close proximity to the region affected. The radioactive material emits radiations which are required to control the unwanted biological material in the body. A good application of this is the treatment of cancer using Cobalt-60.
Radioisotope imaging is a diagnostic process which is an imaging technique that may require placing a radioactive material in the body so as to trace or locate the affected part of the body. In this case, the material is used as a tracing element.
The applications that require the placing of radioactive materials in the body are brachytherapy and radioisotope imaging.
For more explanation, visit: brainly.com/question/9790340
Ok, this is a 2d kinematics problem, the falls 14 m part is confusing, I think it means in the x direction, but you don't need it anyway.
If we know it goes 4m into the air, we know d = 4m (height of wall), we also know the acceleration a=-9.8m/s^2 (because gravity) and that the vertical velocity when it just clears the wall will be 0 m/s, which we'll call our final velocity (Vf). Using Vf^2 = Vi^2 +2a*d, we can solve this for Vi and drop Vf because it's zero to get: Vi = sqrt(-2ad), plug in numbers (don't forget a is negative) and you get 8.85 m/s in the vertical direction. The x-direction velocity requires that we solve the y-direction for time, using Vf= Vi + at, we solve for t, getting t= -Vi/a, plug in numbers t= -8.85/-9.8 = 0.9 s. Now we can use the simple v = d/t (because x-direction has no acceleration (a=0)), and plug in the distance to the wall and the time it takes to get there v = (4/.9) = 4.444 m/s, this is the velocity in the x direction, we use Pythagoras' theorem to find the total velocity, Vtotal = sqrt(Vx^2 + Vy^2), so Vtotal = sqrt(8.85^2+4.444^2) = 9.9m/s. Yay physics!
<u>Answer:</u>
The acceleration of the car is 
<u>Explanation:</u>
In the question it is given that car initially heads north with a velocity
. It then accelerates for
and in the end its velocity is
.
initial velocity 
time 
final velocity 
The equation of acceleration is


The value of acceleration is positive, here since the car is speeding up. If it was slowing down the value of acceleration would be negative.