Atomic mass Ca = 40 a.m.u
1 mole Ca ----------- 40 g
2.5 mols Ca -------- ( mass Ca )
Mass Ca = 2.5 x 40 / 1
Mass Ca = 100 / 1
= 100 g of Ca
hope this helps!
Answer:
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment.
Answer : The wavelength is 
Solution : Given,
frequency = 29.2 Hz
Formula used :

where,
= frequency
= wavelength
c = speed of light = 
Now put all the given values in this formula, we get the wavelength.

Therefore, the wavelength is 
Explanation:
To delineate the the nature of the bonds that would be formed between the two elements, let us first write the electronic configuration of the two species;
Be = 2, 2
F = 2, 7
Beryllium is a metal with two valence electrons whereas fluorine is a halogen with seven valence electrons.
When Be loses two electrons it becomes isoelectronic with He;
Be → Be²⁺ + 2e⁻
Also, when fluorine gains an electron, it becomes isoelectronic with Ne;
F + e⁻ → F⁻
This loss and gain of electrons between the two elements creates an electrostatic attraction them and they enter into an electrovalent bond.
Hence;
Be²⁺ + 2F⁻ → BeF₂
Answer:
Mass = 785.9 g
Explanation:
Given data:
Atoms of gold = 2.4 × 10²⁴ atoms
Mass of gold = ?
Solution:
First of all we will convert the number of atoms into moles.
2.4 × 10²⁴ atoms × 1 mol/ 6.02 × 10²³ atoms
number of moles = 3.99 mol
Now we will determine the mass of gold.
Mass = number of moles × molar mass
Mass = 3.99 mol × 196.97 g/mol
Mass = 785.9 g