The definition of waves that propagate through electric fields is called electromagnetic waves. The earth, despite being covered with clouds, can be 'affected' because waves such as sunlight or the moon have the ability to penetrate and be visible to the inhabitants of the earth. Microwaves and radio waves would be less affected by the clouds that cover the Earth.
Through these waves, you can know that there is beyond the clouds.
Ultraviolet light, microwaves and radio waves are the radiations that penetrate through the clouds and reach the Earth's surface.
Therefore, the answer is Yes, ultraviolet light, microwaves and radio waves are the forms of radiation that penetrate and reach the ground.
Answer:
The net force is zero.
Explanation:
Two opposing and equal forces cancel each other out, giving you a net force of zero.
The relevant equation to use here is:
y = v0 t + 0.5 g t^2
where y is the vertical distance, v0 is initial velocity =
0, t is time, g = 9.8 m/s^2
y = 0 + 0.5 * 9.8 * 3^2
<span>y = 44.1 meters</span>
To solve this problem we will apply the concepts of linear mass density, and the expression of the wavelength with which we can find the frequency of the string. With these values it will be possible to find the voltage value. Later we will apply concepts related to harmonic waves in order to find the fundamental frequency.
The linear mass density is given as,



The expression for the wavelength of the standing wave for the second overtone is

Replacing we have


The frequency of the sound wave is



Now the velocity of the wave would be



The expression that relates the velocity of the wave, tension on the string and linear mass density is





The tension in the string is 547N
PART B) The relation between the fundamental frequency and the
harmonic frequency is

Overtone is the resonant frequency above the fundamental frequency. The second overtone is the second resonant frequency after the fundamental frequency. Therefore

Then,

Rearranging to find the fundamental frequency



Complete Question
The complete question is shown on the first uploaded image
Answer:
The wavelength is
Explanation:
From the question we are told that
The distance of the slit to the screen is 
The order of the fringe is m = 6
The distance between the slit is
The fringe distance is 
Generally the for a dark fringe the fringe distance is mathematically represented as
![Y = \frac{[2m - 1 ] * \lambda * D }{2d}](https://tex.z-dn.net/?f=Y%20%20%3D%20%5Cfrac%7B%5B2m%20%20-%201%20%5D%20%2A%20%20%5Clambda%20%2A%20%20D%20%20%7D%7B2d%7D)
=> ![\lambda = \frac{Y * 2 * d }{[2*m - 1] * D}](https://tex.z-dn.net/?f=%5Clambda%20%20%3D%20%20%5Cfrac%7BY%20%2A%20%202%20%2A%20%20d%20%7D%7B%5B2%2Am%20%20-%20%201%5D%20%2A%20%20D%7D)
substituting values
=> ![\lambda = \frac{0.019 * 2 * 0.9*10^{-3} }{[2*6 - 1] * 5}](https://tex.z-dn.net/?f=%5Clambda%20%20%3D%20%20%5Cfrac%7B0.019%20%2A%20%202%20%2A%20%200.9%2A10%5E%7B-3%7D%20%7D%7B%5B2%2A6%20%20-%20%201%5D%20%2A%20%205%7D)
=> 
