1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
10

For three control stations,there should be how many start buttons in parallel with the suxiliary contact

Engineering
1 answer:
valentinak56 [21]3 years ago
6 0
The three load contacts connected between the three-phase power line and the motor close to connect the motor to the line. The normally open auxiliary contact connected in parallel with the two Start buttons closes to maintain the circuit to M coil when the Start button is released.
You might be interested in
Which term represents an object that has a round or oval base and is connected at every point by lines at a corresponding point
raketka [301]

Answer:

it is a polyhedron

Explanation:

if I am wrong I am sorry

8 0
3 years ago
Read 2 more answers
While playing a game of catch on the quadrangle, you throw a ball at an initial velocity of 17.6 m/s (approximately 39.4 mi/hr),
MAXImum [283]

Answer:

a) The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) The ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

Explanation:

a) The ball experiments a parabolic motion, which is a combination of horizontal motion at constant velocity and vertical motion at constant acceleration. First, we calculate the time taken by the ball to hit the ground:

y = y_{o} + (v_{o}\cdot \sin \theta) \cdot t+\frac{1}{2}\cdot g\cdot t^{2} (1)

Where:

y_{o}, y - Initial and final vertical position, measured in meters.

v_{o} - Initial speed, measured in meters per second.

\theta - Launch angle, measured in sexagesimal degrees.

g - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that y_{o} = 2\,m, y = 0\,m, v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and g = -9.807\,\frac{m}{s^{2}}, then the time taken by the ball is:

-4.904\cdot t^{2}+13.482\cdot t +2 = 0 (2)

This second order polynomial can be solved by Quadratic Formula:

t_{1} \approx 2.890\,s and t_{2} \approx -0.141\,s

Only the first root offers a solution that is physically reasonable. That is, t \approx 2.890\,s.

The vertical velocity of the ball is calculated by this expression:

v_{y} = v_{o}\cdot \sin \theta +g\cdot t (3)

Where:

v_{o,y}, v_{y} - Initial and final vertical velocity, measured in meters per second.

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ}, g = -9.807\,\frac{m}{s^{2}} and t \approx 2.890\,s, then the final vertical velocity is:

v_{y} = -14.860\,\frac{m}{s}

The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) From a) we understand that ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball (x) is determined by the following expression:

x = (v_{o}\cdot \cos \theta)\cdot t (4)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and t \approx 2.890\,s, then the distance covered by the ball is:

x = 32.695\,m

The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before hitting the ground (v), measured in meters per second, is determined by the following Pythagorean identity:

v = \sqrt{(v_{o}\cdot \cos \theta )^{2}+v_{y}^{2}} (5)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, then the magnitude of the velocity of the ball is:

v \approx 18.676\,\frac{m}{s}.

The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is defined by the following trigonometric relationship:

\tan \theta = \frac{v_{y}}{v_{o}\cdot \cos \theta_{o}}

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta_{o} = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, the angle of the total velocity of the ball just before hitting the ground is:

\theta \approx -52.717^{\circ}

The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

3 0
3 years ago
Read 2 more answers
A single fixed pulley is used to lift a load of 400N by the application of an effort of 480N in 10s through a vertical height of
Allushta [10]

Answer:

(a) the velocity ratio of the machine (V.R) = 1

(b) The mechanical advantage of the machine (M.A) = 0.833

(c) The efficiency of the machine (E) = 83.3 %

Explanation:

Given;

load lifted by the pulley, L = 400 N

effort applied in lifting the, E = 480 N

distance moved by the effort, d = 5 m

(a) the velocity ratio of the machine (V.R);

since the effort applied moved downwards through a distance of d, the load will also move upwards through an equal distance 'd'.

V.R = distance moved by effort / distance moved by the load

V.R = 5/5 = 1

(b) The mechanical advantage of the machine (M.A);

M.A = L/E

M.A = 400 / 480

M.A = 0.833

(c) The efficiency of the machine (E);

E = \frac{M.A}{V.R} \times 100\%\\\\E = 0.833 \ \times \ 100\%\\\\ E = 83.3 \ \%

4 0
2 years ago
8. A voltmeter measures a voltage drop of 600 V across a heating element while an
Alchen [17]

Answer:

How do I calculate voltage drop?

To calculate voltage drop, E, across a component, you need to know the resistance of the component and the current thru it. Ohm's Law is E=I⋅R , which tells us to then multiply I by R . E is the voltage across the component also known as voltage drop

Explanation:

5 0
2 years ago
A pump operating at steady state receives liquid water at 20°C, 100 kPa with a mass flow rate of 53 kg/min. The pressure of the
VARVARA [1.3K]

Answer:

Input Power = 6.341 KW

Explanation:

First, we need to calculate enthalpy of the water at inlet and exit state.

At inlet, water is at 20° C and 100 KPa. Under these conditions from saturated water table:

Since the water is in compresses liquid state and the data is not available in compressed liquid chart. Therefore, we use approximation:

h₁ = hf at 20° C = 83.915 KJ/kg

s₁ = sf at 20° C = 0.2965 KJ/kg.k

At the exit state,

P₂ = 5 M Pa

s₂ = s₁ = 0.2965 K J / kg.k    (Isentropic Process)

Since Sg at 5 M Pa is greater than s₂. Therefore, water is in compresses liquid state. Therefore, from compressed liquid property table:

h₂ = 88.94 KJ/kg

Now, the total work done by the pump can be calculated as:

Pump Work = W = (Mass Flow Rate)(h₂ - h₁)

W = (53 kg/min)(1 min/60 sec)(88.94 KJ/kg - 83.915 KJ/kg)

W = 4.438 KW

The efficiency of pump is given as:

efficiency = η = Pump Work/Input Power

Input Power = W/η

Input Power = 4.438 KW/0.7

<u>Input Power = 6.341 KW</u>

5 0
3 years ago
Other questions:
  • What is the relative % change in P if we double the absolute temperature of an ideal gas keeping mass and volume constant?
    14·1 answer
  • Water of dynamic viscosity 1.12E-3 N*s/m2 flows in a pipe of 30 mm diameter. Calculate the largest flowrate for which laminar fl
    13·1 answer
  • A block of ice weighing 20 lb is taken from the freezer where it was stored at -15"F. How many Btu of heat will be required to c
    15·1 answer
  • An ideal reheat Rankine cycle with water as the working fluid operates the boiler at 15,000 kPa, the reheater at 2000 kPa, and t
    13·1 answer
  • The heat transfer surface area of a fin is equal to the sum of all surfaces of the fin exposed to the surrounding medium, includ
    6·1 answer
  • What should you consider when choosing the type of hearing protection you use?
    15·1 answer
  • Please answer fast. With full step by step solution.​
    14·1 answer
  • A tiger cub has a pattern of stripes on it for that is similar to that of his parents where are the instructions stored that pro
    8·1 answer
  • A remote village on an island was devastated by a typhoon. Farmland was flooded and the crops
    9·1 answer
  • Identify the prefixes used in the International System of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!