Answer : The incorrect option is, (d) The reactant that was the smallest given mass is the limiting reagent.
Explanation :
Limiting reagent : It is the reagent that is completely consumed in the chemical reaction when the chemical reaction is complete. No amount is left after the reaction is complete. The amount of product obtained is determined by the limiting reagent. A balanced equation is necessary to determine which reactant is limiting reagent.
Excess reagent : It is the reagent that are not completely consumed in the chemical reaction. That means the reagent is in excess amount. Some amount of the excess reagent is left over after the reaction is complete.
From this we conclude that the options, A, B and C are correct. While the option D is incorrect.
Option D is incorrect because it is not necessary the reactant that was the smallest given mass is the limiting reagent but it is judge by the number of moles present in the reaction.
Hence, the incorrect option is, (d)
Answer:
8.68 L is the new volume
Explanation:
You use Boyle's law for this.

= first pressure
= second pressure
= first volume
= second volume
Convert pressure from atm to mmHg (use same units):
5.97 x 760 = 4537.2 -> 4.54 x 10³
...maintain 3 significant figures in calculation, and round as needed...
(4.54 x 10³ mmHg)(2.79 L) = (1460 mmHg)(
)
(4.54 x 10³ mmHg)(2.79 L) / (1460 mmHg) =
= 8.68 L
Hope this helps :)
Answer:
HNO₃ (aq) —> H⁺ (aq) + NO₃¯ (aq)
Explanation:
From the question given above
HNO₃ + H₂O —> ?
Nitric acid, HNO₃ reacts with water, H₂O to form aqueous solution of nitric acid as illustrated below:
HNO₃ + H₂O —> HNO₃ (aq)
Nitric acid is a strong acid and, so will ionised completely when dissolved in water. This is illustrated below:
HNO₃ (aq) —> H⁺ (aq) + NO₃¯ (aq)
The volume of the granite piece in Cm³ is 12.2 cm³
<u><em>calculation</em></u>
volume of granite = (volume of cylinder after placing granite - volume of cylinder before placing granite
= 37.2 ml - 25.0 ml = 12.2 ml
convert ml to Cm³
that is 1 ml = 1 cm³
12.2 ml = ? cm³
<em>by cross multiplication</em>
=(12.2 ml x 1 cm³) / 1 ml = 12.2 cm³
x= the coefficients in front of the substance in the balanced chemical equation
[H+]= the concentration of hydrogen ions
[A-]= the concentration of the other ion that broke off from the H+
[HA]= the un-disassociated acid concentration
The higher the Ka value, the greater amount of disassociation of the reactants into products. As for acids, they will break down to form H+ ions. The more the H+ ions, the stronger acidity of the solution. Thus since A has the highest Ka value, that represents the strongest acid.
You can determine the Ka value from a number of ways. If equilibrium concentrations are given of a certain acid solution, you can find the proportion of the concentration of ions to the concentration of the remaining HA molecules, using the equation above. Also, pH and KpH can be used in a number of ways. This gets more complicated and depends on the situation, and requires more advanced equations.
Hope this helped a little, its obviously not my best work