Answer:
work = 1728
Power = 134
Explaination:
by using the formula,
Work(W)= Force(F)×Distance(D)
<h2>
and</h2>
Power(P)= Work(W)/Time taken(T)
The statement is false. Vectors are used to solve projectile motion problems because they allow the analysis of one direction at a time for two-dimensional motion. Scalar quantities can be used to analyze linear motion problem, but not projectile motion.
The gas is in a rigid container: this means that its volume remains constant. Therefore, we can use Gay-Lussac law, which states that for a gas at constant volume, the pressure is directly proportional to the temperature. The law can be written as follows:

Where P1=5 atm is the initial pressure, T1=254.5 K is the initial temperature, P2 is the new pressure and T2=101.8 K is the new temperature. Re-arranging the equation and using the data of the problem, we can find P2:

So, the new pressure is 2 atm.
Answer:
0.76
Explanation:
we are given:
radius (r) =5.7 m
speed (s) = 1 revolution in 5.5 seconds
acceleration due to gravity (g) = 9.8 m/s^{2}
coefficient of friction (Uk) = ?
we can get the minimum coefficient of friction from the equation below
centrifugal force = frictional force
m x r x ω^{2} = Uk x m x g
r x ω^{2} = Uk x g
Uk = 
where ω (angular velocity) = 
=
= 1.14
Uk =
= 0.76
It would be f=ma so
a.
f=m <span>× a</span>