Answer:
The specific heat of gold is 0.129 J/g°C
Explanation:
Step 1: Data given
Mass of gold = 15.3 grams
Heat absorbed = 87.2 J
Initial temperature = 35.0 °C
Final temperature = 79.2 °C
Step 2:
Q = m*c*ΔT
⇒ Q =the heat absorbed = 87.2 J
⇒ m = the mass of gold = 15.3 grams
⇒ c = the specific heat of gold = TO BE DETERMINED
⇒ ΔT = The change in temperature = T2 - T1 = 79.2 - 35.0 = 44.2 °C
87.2 J = 15.3g * c * 44.2°C
c = 87.2 / (15.3 * 44.2)
c = 0.129 J/g°C
The specific heat of gold is 0.129 J/g°C
Answer:
The correct option is;
Group 12
Explanation:
A metallic element that is shiny and silver colored that can exist in the +1 and +2 ionic states and which forms a bright red compound with sulfur is mercury, Hg
The compound formed between mercury and silver is one of the earliest synthetic compound also known as vermilion and cinnabar. The bright red pigment of the HgS is used widely and is one of the most favorite pigment found in medieval European outstanding works of arts and in Chinese decorated wares made of lacquer as well as in mesoAmerica.
Answer:
1. CaO + H₂O ----> Ca(OH)₂
Compound ----- Compound
2. 2 Na + Cl₂ ----> 2 NaCl
Element ----- Element
3. 2 SO₂ + O₂ ----> 2 SO₃
Element ----- Compound
(A)Nuclear change..............
Matematically speaking, maybe because:
The number of substances = number of elements + number of different combinations of those elements