I think the correct answer from the choices listed above is option B. It would be CH3(CH2)14CO2-NA+ that would represent the structure of a soap. A soap<span> is a </span>salt<span> of a </span>fatty acid. <span>Soaps for cleaning are obtained by treating vegetable or animal oils and fats with a strong </span>base<span>, such as </span>sodium hydroxide<span> or </span>potassium hydroxide<span> in an </span>aqueous<span> solution.</span>
Idk i’m on that question now
Answer:
Attraction between molecules of methane in liquid state is primarily due to "London dispersion force".
Explanation:
Methane is a non-polar and aprotic molecule. Hence there is no dipole moment in methane as well as no chance of hydrogen bonding formation by methane.
We know that all molecules contain electrons. Therefore transient dipole arises in every molecule due to revolution of electrons around nucleus in a non-circular orbit. Hence an weak intermolecular attraction force is always present in every molecule as a result of this which is termed as "London dispersion force".
So, attraction between molecules of methane in liquid state is primarily due to "London dispersion force".
Answer:
False. In a gas, particles are in continual straight-line motion. The kinetic energy of the molecule is greater than the attractive force between them, thus they are much farther apart and move freely of each other.
Explanation:
Hope this helps! :)
pH=2.7
<h3>Further explanation</h3>
Acetic acid = weak acid
![\tt [H^+]=\sqrt{Ka.M}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D)
Ka = acid ionization constant
M = molarity
Ka for Acetic acid(CH₃COOH) : 1.8 x 10⁻⁵
![\tt [H^+]=\sqrt{1.8\times 10^{-5}\times 0.222}\\\\=0.001998=1.998\times 10^{-3}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-5%7D%5Ctimes%200.222%7D%5C%5C%5C%5C%3D0.001998%3D1.998%5Ctimes%2010%5E%7B-3%7D)
