That would be an endothermic reaction! :)
Answer:
equal and opposite
Explanation:
The size of the forces on the first object equals the size of the force on the second object. The direction of the force on the first object is opposite to the direction of the force on the second object
Answer:
Potential energy
Explanation:
A mountain climber at the peak of a mountain has potential energy.
The potential energy of a body is stored energy in a body. It is function of mass and position of the body.
Mathematically;
P.E = mgh
m is the mass
g is the acceleration due to gravity
h is the height
Answer:
1.7927 mL
Explanation:
The mass of solid taken = 4.75 g
This solid contains 21.6 wt%
, thus,
Mass of
=
= 1.026 g
Molar mass of
= 261.337 g/mol
The formula for the calculation of moles is shown below:
Thus,

Considering the reaction as:

1 moles of
react with 1 mole of 
Thus,
0.003926 mole of
react with 0.003926 mole of 
Moles of
= 0.003926 mole
Also, considering:

Molarity = 2.19 M
So,

Volume = 0.0017927 L
Also, 1 L = 1000 mL
<u>So, volume = 1.7927 mL</u>
Answer:Benzene typically undergoes reactions in which the aromatic ring is preserved.B. Benzene typically reacts with electrophiles where an aromatic proton is substituted by the electrophile
Explanation:
The reactions of benzene are such that the aromatic ring is not destroyed. Addition reactions destroy the aromatic ring hence they aren't typical reactions of benzene. Benzene rings are attacked by electrophiles in which reaction a proton is substituted by the electrophile. Alkenes only undergo addition reaction and not electrophilic substitution reaction.