A continuous process by which rocks are created, changed from one form to another, destroyed, and then formed again into different types of rocks. But what really know is that it's a rocky situation.
The balanced reaction formula is 2CuO + C = 2Cu + CO2. The change the 365 g to mole: 365/79.5=4.6 mol. So you can get 2.3 mol CO2. The mass is 2.3*44=101 g. So the answer is a.
Answer:

Explanation:
Hello,
In this case, for the sample of the given compound, we can compute the moles of each atom (carbon, hydrogen and oxygen) that is present in the sample as shown below:
- Moles of carbon are contained in the 9.582 grams of carbon dioxide:

- Moles of hydrogen are contained in the 3.922 grams of water:

- Mass of oxygen is computed by subtracting both the mass of carbon and hydrogen in carbon dioxide and water respectively from the initial sample:

Finally, we compute the percent by mass of oxygen:

Regards.
Answer:
ΔH = ΔH₁ + ΔH₂ - ΔH₃
Explanation:
Given that:
1. A → 2B
2. B → C + D
3. E → 2D
Assuming from the corresponding ΔH for process 1, 2 and 3 are ΔH₁, ΔH₂, ΔH₃ respectively.
To estimate the ΔH for the process A → 2C + E
We multiply 2 with equation 2 where (B → C + D)
2B → 2C + 2D ⇒ 2ΔH₂
Also, let's switch equation (3), such that we have,
2D → E -ΔH₃
The summation of all the equation result into :
A → 2C + E
where; ΔH = ΔH₁ + ΔH₂ - ΔH₃
<span>1.16 moles/liter
The equation for freezing point depression in an ideal solution is
ΔTF = KF * b * i
where
ΔTF = depression in freezing point, defined as TF (pure) ⒠TF (solution). So in this case ΔTF = 2.15
KF = cryoscopic constant of the solvent (given as 1.86 âc/m)
b = molality of solute
i = van 't Hoff factor (number of ions of solute produced per molecule of solute). For glucose, that will be 1.
Solving for b, we get
ΔTF = KF * b * i
ΔTF/KF = b * i
ΔTF/(KF*i) = b
And substuting known values.
ΔTF/(KF*i) = b
2.15âc/(1.86âc/m * 1) = b
2.15/(1.86 1/m) = b
1.155913978 m = b
So the molarity of the solution is 1.16 moles/liter to 3 significant figures.</span>