Answer:
See explanation below
Explanation:
To get a better understanding watch the picture attached.
In the case of the reaction with Bromine, the -N(CH₃)₂ is a strong ring activator, therefore, it promotes a electrophilic aromatic sustitution, so, in the mechanism of reaction, the lone pair of the Nitrogen, will move to the ring by resonance and activate the ortho and para positions. That's why the bromine wil go to the ortho and para positions, mostly the para position, because the -N(CH₃)₂ cause a steric hindrance in the ortho position.
In the case of the reaction with HNO₃/H₂SO₄, the acid transform the -N(CH₃)₂ in a protonated form, the anilinium ion, which is a deactivating of the ring, and also a strong electron withdrawing, so, the electrophile will go to the meta position instead.
Hope this helps.
Density, odor, and color changes. Hope this helps ฅ^•ﻌ•^ฅ
Let's say say there are n1 mols of helium in the first balloon and n2 mols of nitrogen in the second one, which are equivalent to m1 grams of helium and m2 grams of nitrogen.
The molar mass of hydrogen is thus M1=m1/n1, same for nitrogen M2=m2/n2 hence the ratio of their masses is m1/m2=(M1n1)/(M2n2). Since both gases are rather similar, we can assume that n1~n2 hence m1/m2=M1/M2
Answer:
the melting point is the factor what what degrees fahrenheit a metal or other solid substance melts. the significance of knowing the melting point can help you determine how long or how hot to burn the tested object while at the same time determining the safety requirements.
Explanation: