Answer:
The workdone is 
Explanation:
From the question we are told that
The height of the cylinder is 
The face Area is 
The density of the cylinder is 
Where
is the density of freshwater which has a constant value

Now
Let the final height of the device under the water be 
Let the initial volume underwater be 
Let the initial height under water be 
Let the final volume under water be 
According to the rule of floatation
The weight of the cylinder = Upward thrust
This is mathematically represented as


So 
=> 
Now the work done is mathematically represented as

![= \rho_w g A [\frac{h^2}{2} ] \left | h_f} \atop {h}} \right.](https://tex.z-dn.net/?f=%3D%20%20%20%5Crho_w%20g%20A%20%5B%5Cfrac%7Bh%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20h_f%7D%20%5Catop%20%7Bh%7D%7D%20%5Cright.)
![= \frac{g A \rho}{2} [h^2 - h_f^2]](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7Bg%20A%20%5Crho%7D%7B2%7D%20%20%5Bh%5E2%20-%20h_f%5E2%5D)
![= \frac{g A \rho}{2} (h^2) [1 - \frac{h_f^2}{h^2} ]](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7Bg%20A%20%5Crho%7D%7B2%7D%20%28h%5E2%29%20%20%5B1%20%20-%20%5Cfrac%7Bh_f%5E2%7D%7Bh%5E2%7D%20%5D)
Substituting values

Answer:
the eagle flew 1,025 km
Explanation:
since the eagle flew for 3 hours at 115 km/h it flew a total of 345 km during that time. During the 5 hours at 136 km/h the eagle flew a total of 680 km.
Answer:
1. A satellite is an object which has been sent into space in order to collect information or to be part of a communications system. Satellites move continually round the Earth or around another planet.
2. red giant
3.red giant.
Explanation:
Answer:
he failed thousands of times
Explanation:
There is no known number for his failings. Edison may have failed in many of his experiments and in his schooling, but he had something better working in his favor. He had great determination and persistence.
He failed thousands of times in an attempt to develop an electric light, the great Edison simply viewed each unsuccessful experiment as the elimination of a solution that wouldn’t work, thereby moving him that much closer to a successful solution.
Answer:
Total work done to lift barbell = 890 J
Explanation:
Given:
Weight of barbell (F) = 445 N
Height (Distance) = 2 meter
Find:
Total work done to lift barbell = ?
Computation:
⇒ Work = Force(F) × Distance
⇒ Total work done to lift barbell = Weight of barbell × Distance
⇒ Total work done to lift barbell = 445 N × 2 meter
⇒ Total work done to lift barbell = 890 J