<span>The volume of iron is obtained from the density formula (density= mass/ volume) given the density and mass. In this case, 4,540 grams of iron and a density of 7.86 g/ml are given. The volume obtained from formula is 493.64 ml or 5.78 dL. </span>
I’m not sure what kind of answer you’re looking for, but if you’re supposed to translate it into a sentence it would be two moles of sodium bicarbonate(baking soda) decompose unto one mole of sodium carbonate(soda ash) plus one mole of water and one mole of carbon monoxide gas
Answer:
Number of moles = 0.05 mol
Explanation:
Given data:
Mass of Pb = 10.5 g
Number of moles of Pb = ?
Solution:
Formula:
Number of moles = mass/molar mass
Molar mass of Pb is 207.2 g/mol.
Now we will put the values in formula.
Number of moles = 10.5 g/207.2 g/mol
Number of moles = 0.05 mol
Thus, sound will travel at a slower rate in the denser object. If sound waves of the same energy were passed through a block of wood and a block of steel, which is more dense than the wood, the molecules of the steel would vibrate at a slower rate. Thus, sound passes more quickly through the wood, which is less dense.
Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>