Answer:
6.97 atm was the equilibrium pressure of HBr .
Explanation:
The value of the equilibrium constant =

Initially:
0 0 7.10 atm
At equilibrium
x x (7.10-2x)
The expression of equilibrium constant can be written as:


Solving for x:
x = 0.065
Partial pressure of HBr at equilibrium :(7.10 - 2 × 0.065) atm = 6.97 atm
6.97 atm was the equilibrium pressure of HBr .
Answer:
Total energy consumed = 1,882.8 joules
Explanation:
Given:
Calories burned = 450 calories
Find:
Total energy consumed
Computation:
1 calorie = 4.184 joules
So,
450 calories = 4.184 × 450
450 calories = 1,882.8 joules
Total energy consumed = 1,882.8 joules
Answer:
Second Law
Explanation:
Newton's second law states that the acceleration caused in a body is directly proportional to the force applied and inversely proportion to the mass of the body.
This is given by :

In this case the suggestion given to reduce the aircraft's cargo load is the right move as reducing the load on the aircraft will decrease the mass of the whole aircraft. This in turn will help the aircraft to accelerate more as acceleration inversely varies with mass. Thus the aircraft will be able to reach its flying speed even on a short run way.
Hence, Newton's second law is applied.
Atomic mass / mass number / atomic weight
(all of which mean the same thing)
Answer:
pH = -log₁₀ [H⁺]
Explanation:
pH is a value in chemistry used in to measure solution trying to determine each quality, purity, risks for health of some products, etc.
As you write in the question, [H⁺] = 10^(-pH)
Using logarithm law (log (m^(p) = p log(m):
log₁₀ [H⁺] = -pH
And
<h3>pH = -log₁₀ [H⁺]</h3>