The initial kinetic energy of the boat and its rider is

After Sam stops it, the final kinetic energy of the boat+rider is

because its final velocity is zero.
For the law of conservation of energy, the work done by Sam is the variation of kinetic energy of the system:

where the negative sign is due to the fact that the force Sam is applying goes against the direction of motion of the boat.
Answer:
82.1 km
Explanation:
We need to resolve each displacement along two perpendicular directions: the east-west direction (let's label it with x) and the north-south direction (y). Resolving each vector:

Vector B is 48 km south, so:

Finally, vector C:

Now we add the components along each direction:

So, the resultant (which is the distance in a straight line between the starting point and the final point of the motion) is

Explanation:
Assuming the wall is frictionless, there are four forces acting on the ladder.
Weight pulling down at the center of the ladder (mg).
Reaction force pushing to the left at the wall (Rw).
Reaction force pushing up at the foot of the ladder (Rf).
Friction force pushing to the right at the foot of the ladder (Ff).
(a) Calculate the reaction force at the wall.
Take the sum of the moments about the foot of the ladder.
∑τ = Iα
Rw (3.0 sin 60°) − mg (1.5 cos 60°) = 0
Rw (3.0 sin 60°) = mg (1.5 cos 60°)
Rw = mg / (2 tan 60°)
Rw = (10 kg) (9.8 m/s²) / (2√3)
Rw = 28 N
(b) State the friction at the foot of the ladder.
Take the sum of the forces in the x direction.
∑F = ma
Ff − Rw = 0
Ff = Rw
Ff = 28 N
(c) State the reaction at the foot of the ladder.
Take the sum of the forces in the y direction.
∑F = ma
Rf − mg = 0
Rf = mg
Rf = 98 N
The amount of heat required is B) 150 J
Explanation:
The amount of heat energy required to increase the temperature of a substance is given by the equation:

where:
m is the mass of the substance
C is the specific heat capacity of the substance
is the change in temperature of the substance
For the sample of copper in this problem, we have:
m = 25 g (mass)
C = 0.39 J/gºC (specific heat capacity of copper)
(change in temperature)
Substituting, we find:

So, the closest answer is B) 150 J.
Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly