Answer:
= 0.0050 M
= 0.0155 M
Explanation:
Initial moles of
= 0.072 mole
Volume of container = 3.9 L
Initial concentration of
The given balanced equilibrium reaction is,

Initial conc. 0.018 M 0
At eqm. conc. (0.018-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[I]^2}{[I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BI%5D%5E2%7D%7B%5BI_2%5D%7D)

we are given : 
Now put all the given values in this expression, we get :


So, the concentrations for the components at equilibrium are:
![[I]=2\times x=2\times 0.0025=0.0050](https://tex.z-dn.net/?f=%5BI%5D%3D2%5Ctimes%20x%3D2%5Ctimes%200.0025%3D0.0050)
![[I_2]=0.018-x=0.018-0.0025=0.0155](https://tex.z-dn.net/?f=%5BI_2%5D%3D0.018-x%3D0.018-0.0025%3D0.0155)
Hence, concentrations of
and
are 0.0050 M ad 0.0155 M respectively.
Density = mass / volume = 7/14 = 0.5!g/cm^3
It has to move through a distance over time.
Answer:
Explanation:
Suppose initially the plane was horizontal and light was reflected back at some angle θ from the normal .
Now the reflecting surface is twisted so that is becomes inclined at angle alpha .
The reflected light will be deviated from its original direction by angle
2 x alpha .
Similarly when the reflecting surface is further twisted so that it becomes inclined at angle beta then again the reflected beam will deviated by angle
2 x beta
Hence angle between these two reflected beam
= 2 beta - 2 alpha
= 2 ( β - α )
So, angular separation between the rays reflected from the two surfaces
= 2 ( β - α ) .
Answer: Some challenges that I could see would be the walls, possibly a moat, tar, and the towers.
Explanation: The wall is obliviously a main problem, trying to get over it or through it is a difficult challenge. The moat (if it has one) means that there is more than likely only one way to get in or out. If it does have tar it means that the attackers are going to be put in a "sticky situation" And finally the towers, they have people at the top shooting arrows down at you, or throwing things at you.