Answer:
14,700 N
Explanation:
The hyppo is standing completely submerged on the bottom of the lake. Since it is still, it means that the net force acting on it is zero: so, the weight of the hyppo (W), pushing downward, is balanced by the upward normal force, N:
(1)
the weight of the hyppo is

where m is the hyppo's mass and g is the gravitational acceleration; therefore, solving eq.(1) for N, we find

Answer:
Both the astronauts and photographer have the same displacement
Explanation:
Displacement is the minimum distance between two point. The initial point of both the astronauts and the photographer was Florida and the final point was California. So, the minimum distance for both of the astronauts and the photographer would be the distance between Florida and California would be the same.
Hence, both the astronauts and photographer will have the same displacement.
Most marine bioluminescence is blue-green, which is easier to see in the deep ocean
Explanation:
As per science, Emission and production of light by a living organism is defined as Bioluminescence. Bioluminescence occurs widely in marine animals whereas it is triggered by a physical disturbance is seen by humans, such as a moving boat hull or waves.
Throughout the water column bioluminescent organisms live and bioluminescence is extremely common in deep sea which shows that visible spectrum is more limited to marine animals than humans.
Answer: The lower areas of the Atmosphere have a high temperature through the heats from the ground.
Explanation: High temperature experienced on the Earth surface is majorly caused by heats from the ground ( Earth crust).As a person ascend up to the Toposphere the temperature continues to reduce because because the heat from the ground is reduced as the heights increased.
It has been proven that as a person ascends into the Toposphere the amount of air and pressure reduces this will eventually lead to expansion of the gas particles which will then reduce the temperature.
This may helpv^2=u^2+2as. v=0 at top of flight. a=acceleration of gravity(vo^2)/2a=s.