Answer:
Original speed of the mess kit = 4.43 m/s at 50.67° north of east.
Explanation:
Let north represent positive y axis and east represent positive x axis.
Here momentum is conserved.
Let the initial velocity be v.
Initial momentum = 4.4 x v = 4.4v
Velocity of 2.2 kg moving at 2.9 m/s, due north = 2.9 j m/s
Velocity of 2.2 kg moving at 6.8 m/s, 35° north of east = 6.9 ( cos 35i + sin35 j ) = 5.62 i + 3.96 j m/s
Final momentum = 2.2 x 2.9 j + 2.2 x (5.62 i + 3.96 j) = 12.364 i + 15.092 j kgm/s
We have
Initial momentum = Final momentum
4.4v = 12.364 i + 15.092 j
v =2.81 i + 3.43 j
Magnitude

Direction

50.67° north of east.
Original speed of the mess kit = 4.43 m/s at 50.67° north of east.
Answer:
The force constant is 
The energy stored in the spring is 
Explanation:
From the question we are told that
The mass of the object is 
The period is 
The period of the spring oscillation is mathematically represented as

where k is the force constant
So making k the subject

substituting values


The energy stored in the spring is mathematically represented as

Where x is the spring displacement which is given as

substituting values


Correct question is;
A thermal tap used in a certain apparatus consists of a silica rod which fits tightly inside an aluminium tube whose internal diameter is 8mm at 0°C.When the temperature is raised ,the fits is no longer exact. Calculate what change in temperature is necessary to produce a channel whose cross-sectional is equal to that of the tube of 1mm. (linear expansivity of silica = 8 × 10^(-6) /K and linear expansivity of aluminium = 26 × 10^(-6) /K).
Answer:
ΔT = 268.67K
Explanation:
We are given;
d1 = 8mm
d2 = 1mm
At standard temperature and pressure conditions, the temperature is 273K.
Thus; Initial temperature; T1 = 273K,
Using the combined gas law, we have;
P1×V1/T1 = P2×V2/T2
The pressure is constant and so P1 = P2. They will cancel out in the combined gas law to give:
V1/T1 = V2/T2
Now, volume of the tube is given by the formula;V = Area × height = Ah
Thus;
V1 = (πd1²/4)h
V2 = (π(d2)²/4)h
Thus;
(πd1²/4)h/T1 = (π(d2)²/4)h/T2
π, h and 4 will cancel out to give;
d1²/T1 = (d2)²/T2
T2 = ((d2)² × T1)/d1²
T2 = (1² × T1)/8²
T2 = 273/64
T2 = 4.23K
Therefore, Change in temperature is; ΔT = T2 - T1
ΔT = 273 - 4.23
ΔT = 268.67K
Thus, the temperature decreased to 268.67K