Answer:
I don't know the exact answer but I think this is it.
The independent variable is the variable the experimenter changes or controls and is assumed to have a direct effect on the dependent variable. The dependent variable is the variable being tested and measured in an experiment, and is 'dependent' on the independent variable.
<h3><u>Answer;</u></h3>
C) He could injure or pull a muscle.
<h3><u>Explanation</u>;</h3>
- <em><u>When muscles are stretched the muscle fibers are temporary lengthened. Muscles have a unique ability to undergo contraction and lengthening since they are elastic.</u></em>
- <em><u>When the muscles are warm they are more elastic, therefore, warming up the muscles is very important for the purpose of avoiding injuries.</u></em> Ir is important to engage in moderate cardiovascular warm-up prior to stretching, which increases the blood flow to the active and thus avoiding injuries to the muscles.
- Stretching muscles when they are cold may bring injuries or cause muscle pulls, which are painful.
<h3>
Answer: The acceleration doubles</h3>
===========================================================
Explanation:
Consider a mass of 10 kg, so m = 10
Let's say we apply a net force of 20 newtons, so F = 20
The acceleration 'a' is...
F = ma
20 = 10a
20/10 = a
2 = a
a = 2
The acceleration is 2 m/s^2. Every second, the velocity increases by 10 m/s.
---------------
Now let's double the net force on the object
F = 20 goes to F = 40
m = 10 stays the same
F = ma
40 = 10a
10a = 40
a = 40/10
a = 4
The acceleration has also doubled since earlier it was a = 2, but now it's a = 4.
---------------
In summary, if you double the net force applied to the object, then the acceleration doubles as well.
What information can scientists obtain from tree rings?
Answer's <u>I chose</u>:
<h3>how narrow the rings are</h3><h3>how the climate changed in the tree’s life</h3><h3>how wide the rings are</h3>
Please <u>correct</u> me if there are <em>more </em>or <em>less</em>
Please give a brainliest and a thanks.
<h2>❣</h2>