Answer:
it will send the message through the axon
You can see a physical change always but not always a chemical
Electrons and protons because they are essentially always the same
Answer:
The enthalpy of the solution is -35.9 kJ/mol
Explanation:
<u>Step 1:</u> Data given
Mass of lithiumchloride = 3.00 grams
Volume of water = 100 mL
Change in temperature = 6.09 °C
<u>Step 2:</u> Calculate mass of water
Mass of water = 1g/mL * 100 mL = 100 grams
<u>Step 3:</u> Calculate heat
q = m*c*ΔT
with m = the mass of water = 100 grams
with c = the heat capacity = 4.184 J/g°C
with ΔT = the chgange in temperature = 6.09 °C
q = 100 grams * 4.184 J/g°C * 6.09 °C
q =2548.1 J
<u>Step 4:</u> Calculate moles lithiumchloride
Moles LiCl = mass LiCl / Molar mass LiCl
Moles LiCl = 3 grams / 42.394 g/mol
Moles LiCl = 0.071 moles
<u>Step 5:</u> Calculate enthalpy of solution
ΔH = 2548.1 J /0.071 moles
ΔH = 35888.7 J/mol = 35.9 kJ/mol (negative because it's exothermic)
The enthalpy of the solution is -35.9 kJ/mol
Answer:
The value is 
Explanation:
From the question we are told that
The molar mass of
is 
The total mass is
The uncertainty of the total mass is 
Generally the molar weight of calcium is 
The percentage of calcium in calcite is mathematically represented as


Generally the mass of each sample is mathematically represented as



Generally mass of calcium present in a single sample is mathematically represented as


The uncertainty of mass of a single sample is mathematically represented as



The uncertainty of mass of calcium in a single sample is mathematically represent

Generally the average mass of calcium in each sample is
