<u>Answer:</u> The
for the reaction is 51.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical equation for the reaction of carbon and water follows:

The intermediate balanced chemical reaction are:
(1)
( × 2)
(2)
( × 2)
(3)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[2\times \Delta H_1]+[2\times \Delta H_2]+[1\times (-\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B2%5Ctimes%20%5CDelta%20H_1%5D%2B%5B2%5Ctimes%20%5CDelta%20H_2%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(2\times (-393.7))+(2\times (-285.9))+(1\times -(-1411))]=51.8kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-393.7%29%29%2B%282%5Ctimes%20%28-285.9%29%29%2B%281%5Ctimes%20-%28-1411%29%29%5D%3D51.8kJ)
Hence, the
for the reaction is 51.8 kJ.
Ice is a mixture and it can be a compound at the same time. A mixture is when you have to substance's put together fro example you can mix salt and sugar together. But a compound is when two different elements or molecules are combined. Ice cream is a mixture or cream and sugar mainly.
In a physical change the appearance or form of the matter changes but the kind of matter in the substance does not. However in a chemical change, the kind of matter changes and at least one new substance with new properties is formed. Hope this helps!
Answer:
a) 90 kg
b) 68.4 kg
c) 0 kg/L
Explanation:
Mass balance:

w is the mass flow
m is the mass of salt

v is the volume flow
C is the concentration





![-[ln(2000L+3*L/min*t)-ln(2000L)]=ln(m)-ln(90kg)](https://tex.z-dn.net/?f=-%5Bln%282000L%2B3%2AL%2Fmin%2At%29-ln%282000L%29%5D%3Dln%28m%29-ln%2890kg%29)
![-ln[(2000L+3*L/min*t)/2000L]=ln(m/90kg)](https://tex.z-dn.net/?f=-ln%5B%282000L%2B3%2AL%2Fmin%2At%29%2F2000L%5D%3Dln%28m%2F90kg%29)
![m=90kg*[2000L/(2000L+3*L/min*t)]](https://tex.z-dn.net/?f=m%3D90kg%2A%5B2000L%2F%282000L%2B3%2AL%2Fmin%2At%29%5D)
a) Initially: t=0
![m=90kg*[2000L/(2000L+3*L/min*0)]=90kg](https://tex.z-dn.net/?f=m%3D90kg%2A%5B2000L%2F%282000L%2B3%2AL%2Fmin%2A0%29%5D%3D90kg)
b) t=210 min (3.5 hr)
![m=90kg*[2000L/(2000L+3*L/min*210min)]=68.4kg](https://tex.z-dn.net/?f=m%3D90kg%2A%5B2000L%2F%282000L%2B3%2AL%2Fmin%2A210min%29%5D%3D68.4kg)
c) If time trends to infinity the division trends to 0 and, therefore, m trends to 0. So, the concentration at infinit time is 0 kg/L.
Answer: A
1.68 N
Explanation:
F = ma = 0.024(70.0) = 1.68 N