Answer : The density of a sample of chlorine gas is, 12.59 g/L
Explanation :
To calculate the density of chlorine gas we are using ideal gas equation.

where,
P = pressure of chlorine gas = 4.5 atm
V = volume of chlorine gas = 12.6 L
n = number of moles of chlorine gas
w = mass of chlorine gas
R = gas constant = 0.0821 L.atm/mol.K
T = temperature of chlorine gas = 
M = molar mass of chlorine gas = 71 g/mol
Now put all the given values in the above formula, we get:



Therefore, the density of a sample of chlorine gas is, 12.59 g/L
The molecular mass of sucrose is 342.3<span> grams per mole (g/mol).</span>
Answer:
They are both pretty soft for metals, but magnesium is significantly harder than calcium using this scale . Mg = 2.5, Ca = 1.75. The larger the number, the harder
Explanation:
The equation is 2 NH3 (g) ⇀↽ N2 (g) + 3 H2 (g)
Difference in the number of moles delta n = ((3 + 1) - 2) = 4 - 2 = 2
We have an equation Kp= Kc (R x T) ^ (delta n); R is constant and T = 300 K
Kp / Kc = (R x T) ^2 Based on the temperature value (300 K), we can conclude that Kp is Larger.
The concept used here is the Le Chatelier's principle. When a disturbance is introduced to the system, it favors the direction of reaction that minimizes the disturbance to regain equilibrium.
In endothermic reactions, the forward reaction is favored when the temperature is low. Otherwise, the reverse reaction is favored. When you add the amounts of substances on the reactant side, more products would formed favoring the forward reaction. If you increase concentration on the product side, you form more reactants so it would favor the reverse reaction. Lastly, since 10 moles of gases are needed in the reactant side, it would be favored during high pressure reaction.