Here is some information: "Neon is a chemical element with symbol Ne and atomic number 10. It is in group 18 of the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered in 1898 as one of the three residual rare inert elements remaining in dry air, after nitrogen, oxygen, argon and carbon dioxide were removed. Neon was the second of these three rare gases to be discovered, and was immediately recognized as a new element from its bright red emission spectrum. The name neon is derived from the Greek word, νέον, neuter singular form of νέος, meaning new. Neon is chemically inert and forms no uncharged chemical compounds. The compounds of neon include ionic molecules, molecules held together by van der Waals forces and clathrates."
Also: "Neon is rare on Earth, found in the Earth's atmosphere at 1 part in 55,000, or 18.2 ppm by volume (this is about the same as the molecule or mole fraction), or 1 part in 79,000 of air by mass."
Also I only found one if that is okay but here it is: It is the place where it is a city and most people find most neon there.
Answer:
2 E16 Hz or 2 * 10^16 Hz
Explanation:
The formula to determine frequency is f = c / λ.
f = frequency
c = speed of light
λ = wavelength
f = 3E8 / 1.5E-8
f = 2E16
This makes sense because UV light exists roughly
between 8E14 Hz and 3E16 Hz ----- 2E16 Hz falls in that range
An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. A covalent bond involves a pair of electrons being shared between atoms.
Answer: they both have large amounts of iron (Fe)
Explanation:
Formula to calculate standard electrode potential is as follows.

= 0.535 - 1.065
= - 0.53 V
Also, it is known that relation between
and K is as follows.

ln K =
Substituting the given values into the above formula as follows.
ln K =
=
ln K = -41.28
K =
= 
Thus, we can conclude that the value of the equilibrium constant for the given reaction is
.