Answer:
b) the reaction proceeds to a new equilibrium in the direction that offsets the change.
Explanation:
According to Le Chatelier's principle, when a system experiences a constraint such as a change in pressure, temperature or concentration, the system will readjust itself in order to annul the constraint.
This simply means that when temperature, concentration or pressure is changed, a new equilibrium position is reached in order to offset the changes in the system.
This problem requires a certain equation. That equation is V1/T1=V2/T2, where V1 is your initial volume (535 mL in this case), T1 is your initial temperature in Kelvin(23 degrees C = 296 K), V2 is your final volume (unknown), and T2 is your final temperature (46 degrees C = 319 K). By plugging in these values, the equation looks like this: 535/296=V2/319. Now multiply both sides of the equation by 319, and your final answer is V2= 576.6 mL
Answer:
49.35 mL
Explanation:
Given: 56.2 mL of gas
To find: volume that 56.2 mL of gas at 820 mm of Hg would occupy at 720 mm of Hg
Solution:
At 820 mm of Hg, volume of gas is 56.2 mL
At 1 mm of Hg, volume of gas is 
At 720 mm of Hg, volume of gas is 
Answer:
<h2>The species that furnishes the electrons is called the reducing agent. In this case, the reducing agent is zinc metal.</h2>
Explanation:
<h2>Hopes this helps. Mark as brainlest plz!</h2>