Metalloids have properties of both metals and non-metals. Some of the metalloids, such as silicon and germanium, are useful in semi-conductors. This property makes metalloids useful in electronic components. Some allotropes of elements show more pronounced metal, metalloid or non-metal behavior than others.
Hope this helps! ;)
I'm pretty sure it would feel like magic, You could definitely float when you jump
Answer:
There was an electron transfer where the marble has lost the same amount of electrons (being positively charged) that the piece of silk has gained (being negatively charged).
Explanation:
As a result of this transfer of electrons and the charges induced in the objects they will attract.
When a body is endowed with electrical properties, that is, it acquires electrical charges, it is said to have been electrified.
Electrification is one of the phenomena that studies electrostatics.
To explain how static electricity originates, we must consider that matter is made of atoms, and atoms of charged particles, a nucleus surrounded by a cloud of electrons. Normally, matter is neutral (not electrified), it has the same number of positive and negative charges.
Some atoms are easier to lose their electrons than others. If a material tends to lose some of its electrons when it comes into contact with another, it is said to be more positive in the Triboelectric series. If a material tends to capture electrons when it comes into contact with another material, that material is more negative in the triboelectric series.
Answer:
a) 3.98 x 10^-10
Explanation:
Hello,
In this case, for the given pH, we can compute the concentration of hydronium by using the following formula:
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
Hence, solving for the concentration of hydronium:
![[H^+]=10^{-pH}=10^{-9.40}\\](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-9.40%7D%5C%5C)
![[H^+]=3.98x10^{-10}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D3.98x10%5E%7B-10%7DM)
Therefore, answer is a) 3.98 x 10^-10
Best regards.