Answer:
2.62*10^-3
Explanation:
To do this by hand, you need to understand the rules of scientific notation.
The main class of high-temperature superconductors are in the class of copper oxides (only some particular copper oxides) especially the Rare-earth barium copper oxides (REBCOs) such as Yttrium barium copper oxide (YBCO).
<h3>What superconducting material works with the highest temperature?</h3>
As of 2020, the material with the highest accepted superconducting temperature is an extremely pressurized carbonaceous sulfur hydride with a critical transition temperature of +15°C at 267 GPa.
<h3>How do high-temperature superconductors work?</h3>
High-temperature superconductivity, the ability of certain materials to conduct electricity with zero electrical resistance at temperatures above the boiling point of liquid nitrogen, was unexpectedly discovered in copper oxide (cuprate) materials in 1987.
Learn more about high temperature superconductors here:
<h3>
brainly.com/question/1657823</h3><h3 /><h3>#SPJ4</h3>
Answer:
See explanation
Explanation:
When sodamide reacts with methanol, the following equilibrium is set up;
CH3OH(aq) + NH2-(aq) ⇄ CH3O-(aq) + NH3(aq)
In the reaction, the sodamide acts as a base that abstracts a proton from methanol to yield the conjugate base of methanol which is the methoxide ion.
The forward reaction is favoured at equilibrium.
Chemical bonds are broken to supply us with energy. Without bonds, and our ability to break them, the food we eat would not supply us with energy.