Answer:
E = 124.7 N / C
Explanation:
Let's analyze the exercise: the microwave creates an electromagnetic wave of frequency F = 2.45 GHz, this wave is introduced into the microwave cavity and is reflected on the metal walls, which is why one or more standing waves are formed.
The electric field of the standing wave is
I = E²
E =√I
where I is the intensity of the radiation.
What is it
I = P / A
where P is the effective emission power, almost all the power of the microwave and A is the area of the cavity, in the most used microwaves
P = 700 W and the area is A = 25 x 18 cm² = 0.045 m²
I = 700 / 0.045
I = 15555.56 W/m²
let's calculate the electric field
E = √15555.56
E = 124.7 N / C
Answer:
Length of the pendulum will be 3.987 m
Explanation:
We have given time period of the pendulum T = 8 sec
Acceleration due to gravity 
We have to find the length of the simple pendulum
We know that time period of the simple pendulum is given by



So length of the pendulum will be 3.987 m
Answer:
-67,500 kgm/s
Explanation:
1300 * 20 + 1100 * (-85) = -67,500 kgm/s
Given: Mass m = 44 Kg; Velocity v = 10 m/s
Required: Kinetic energy K.E = ?
Formula: K.E = 1/2 mv²
K.E 1/2 (44 Kg)(10 m/s)²
K.E = 2,200 Kg.m²/s²
K.E = 2,200 J Answer is A
Observer A is moving inside the train
so here observer A will not be able to see the change in position of train as he is standing in the same reference frame
So here as per observer A the train will remain at rest and its not moving at all
Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body
So here observer B will see the actual motion of train which is moving in forward direction away from the platform
Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction
So the distance between them will decrease at faster rate
Now as per Newton's II law
F = ma
Now if train apply the brakes the net force on it will be opposite to its motion
So we can say
- F = ma

so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate
It is not affected by the gravity because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train
So there is no effect on train motion