The answer is: (5696 J) / (155 g) / (40.0 - 25.0)°C = 2.45 J/g·°C
The total pressure when the new equilibrium is stabilized is half of the initial pressure of the system.
The given chemical reaction at a stable equilibrium is,
2H₂O(g)+O₂(g) = 2H₂O₂(g)
According to the ideal gas equation,
PV = nRT
P is pressure,
V is volume,
n is moles
R is gas constant,
T is temperature.
Assuming the temperature is constant.
If the volume of the system is twice the initial volume then the total pressure at the new equilibrium can be found out as,
P₁V₁ = P₂V₂
Where, P₁ and V₁ are initial volume and pressure while P₂ and V₂ are final pressure and volume.
If V₂ = 2V₁,
P₂ = P₁/2
So, the final total pressure will be half of the initial pressure.
To know more about equilibrium, visit,
brainly.com/question/517289
#SPJ4
Answer:
both
Explanation:
id say that it could occur but also not as much. the moon would be smaller and further from the earth to where we would barely be able to see it. if the full moon is barely visible then im sure the total solar eclipse wouldn't be as noticeable as it is now. but thats just my opinion
Answer:
0.189 g.
Explanation:
- This problem is an application on <em>Henry's law.</em>
- Henry's law states that the solubility of a gas in a liquid is directly proportional to its partial pressure of the gas above the liquid.
- Solubility of the gas ∝ partial pressure
- If we have different solubility at different pressures, we can express Henry's law as:
<em>S₁/P₁ = S₂/P₂,</em>
S₁ = 0.0106/0.792 = 0.0134 g/L and P₁ = 0.321 atm
S₂ = ??? g/L and P₂ = 5.73 atm
- So, The solubility of the gas at 5.73 atm (S₂) = S₁.P₂/P₁ = (0.0134 g/L x 5.73 atm) / (0.321 atm) = 0.239 g/L.
<em>The quantity in (g) = S₂ x V = (0.239 g/L)(0.792 L) = 0.189 g.</em>
<em></em>
Has only 7 electrons so it want to bond with other elements so its very reactive and unstable. Hope this helps