Answer:
Part a)

Part b)
if both sides are rough then it will reach the same height on the other side because the energy is being conserved.
Part c)
Since marble will go to same height when it is rough while when it is smooth then it will go to the height

so on smooth it will go to lower height
Explanation:
As we know by energy conservation the total energy at the bottom of the bowl is given as

here we know that on the left side the ball is rolling due to which it is having rotational and transnational both kinetic energy
now on the right side of the bowl there is no friction
so its rotational kinetic energy will not change and remains the same
so it will have

now we know that


so we have




so the height on the smooth side is given as

Part b)
if both sides are rough then it will reach the same height on the other side because the energy is being conserved.
Part c)
Since marble will go to same height when it is rough while when it is smooth then it will go to the height

so on smooth it will go to lower height
It was a man named <span>Johannes Kepler. </span>
Answer:
a) 1504.8 J
b) 991.76 J
c) 0J
d) 0J
Explanation:
(a) The work done by the force P on the box is given by the following formula:

P: applied force = 171N
x: distance in which the for P is applied = 8.80m
you replace the values of P and x and obtain:

(b) The work don by the friction force is:

μ = coefficient of kinetic friction = 0.250
M: mass of the box = 46.0kg
g: gravitational constant = 9.8 m/s^2

(c) The Normal force is

but this force does not do work on the box because the direction is perpendicular to the direction of the force P.

(d) the same as before:

Answer:
The heat capacity of a sample is 37.7 J/K.
Explanation:
Given that,
Submerged temperature of tissue sample = 275 K
Mass of liquid nitrogen= 2 kg
Temperature = 70 K
Final temperature = 75 K
We need to calculate the heat
Using formula of heat

Put the value into the formula


We need to calculate the heat capacity of a sample
Using formula of heat capacity

Put the value into the formula


Hence, The heat capacity of a sample is 37.7 J/K.