1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darya [45]
3 years ago
6

Which apparatus is included in a task force?

Engineering
1 answer:
Yakvenalex [24]3 years ago
7 0

Answer:

I am Sachin this answer is fire engine is your name is this

You might be interested in
As the impurity concentration in solid solution of a metal is increased, the tensile strength:________.a) decreasesb) increasesc
valkas [14]

Answer:

Increases

Explanation:

By inhibiting the motion of dislocations by impurities in a solid solutions, is a strengthening mechanism. In solid solutions it is atomic level strengthening resulting from resistance to dislocation motion. Hence, the strength of the alloys can differ with respect to the precipitate's property. Example, the precipitate is stronger (ability to an obstacle to the dislocation motion) than the matrix and it shows an improvement of strength.

5 0
3 years ago
.a. What size vessel holds 2 kg water at 80°C such that 70% is vapor? What are the pressure and internal energy? b. A 1.6 m3 ves
vesna_86 [32]

Answer:

Part a: The volume of vessel is 4.7680m^3 and total internal energy is 3680 kJ.

Part b: The quality of the mixture is 90.3%  or 0.903, temperature is 120 °C and total internal energy is 4660 kJ.

Explanation:

Part a:

As per given data

m=2 kg

T=80 °C =80+273=353 K

Dryness=70% vapour =0.7

<em>From the steam tables at 80 °C</em>

Specific volume of saturated vapours=v_g=3.40527 m^3/kg

Specific volume of saturated liquid=v_f=0.00102 m^3/kg

Now the relation  of total specific volume for a specific dryness value is given as

                                  v=v_f+x(v_g-v_f)

Substituting the values give

v=v_f+x(v_g-v_f)\\v=0.00102+0.7(3.40527-0.00102)\\v_f=2.38399 m^3/kg

Now the volume of vessel is given as

v=\frac{V}{m}\\V=v \times m\\V=2.38399 \times 2\\V=4.7680 m^3

So the volume of vessel is 4.7680m^3.

Similarly for T=80 and dryness ratio of 0.7 from the table of steam

Pressure=P=47.4 kPa

Specific internal energy is given as u=1840 kJ/kg

So the total internal energy is given as

u=\frac{U}{m}\\U=u \times m\\U=1840 \times 2\\U=3680 kJ

The total internal energy is 3680 kJ.

So the volume of vessel is 4.7680m^3 and total internal energy is 3680 kJ.

Part b

Volume of vessel is given as 1.6

mass is given as 2 kg

Pressure is given as 0.2 MPa or 200 kPa

Now the specific volume is given as

v=\frac{V}{m}\\v=\frac{1.6}{2}\\v=0.8 m^3/kg

So from steam tables for Pressure=200 kPa and specific volume as 0.8 gives

Temperature=T=120 °C

Quality=x=0.903 ≈ 90.3%

Specific internal energy =u=2330 kJ/kg

The total internal energy is given as

u=\frac{U}{m}\\U=u \times m\\U=2330 \times 2\\U=4660 kJ

So the quality of the mixture is 90.3%  or 0.903, temperature is 120 °C and total internal energy is 4660 kJ.

5 0
3 years ago
Complete function PrintPopcornTime(), with int parameter bagOunces, and void return type. If bagOunces is less than 3, print "To
weqwewe [10]

Answer:

#include <iostream>

using namespace std;

void PrintPopcornTime(int bagOunces) {

if(bagOunces < 3){

 cout << "Too small";

 cout << endl;

}

else if(bagOunces > 10){

 cout << "Too large";

 cout << endl;

}

else{

 cout << (6 * bagOunces) << " seconds" << endl;

}

}

int main() {

  PrintPopcornTime(7);

  return 0;

}

Explanation:

Using C++ to write the program. In line 1 we define the header "#include <iostream>"  that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.

8 0
3 years ago
An 800-kg drag racer accelerates from rest to 390 km/hr in 5.8 s. What is the net impulse applied to the racer in the first 5.8
marissa [1.9K]

Answer:

Impulse =14937.9 N

tangential force =14937.9 N

Explanation:

Given that

Mass of car m= 800 kg

initial velocity u=0

Final velocity v=390 km/hr

Final velocity v=108.3 m/s

So change in linear momentum P= m x v

           P= 800 x 108.3

 P=86640 kg.m/s

We know that impulse force F= P/t

So F= 86640/5.8 N

F=14937.9 N

Impulse force F= 14937.9 N

We know that

v=u + at

108.3 = 0 + a x 5.8

a=18.66\ m/s^2

So tangential force F= m x a

F=18.66 x 800

F=14937.9 N

6 0
3 years ago
Much of the workd went to bed hungry
Marysya12 [62]
The workers went to bed hungry probably because they are hard workers and so didn’t want to eat because they didn’t want to take break┌(; ̄◇ ̄)┘
7 0
3 years ago
Other questions:
  • A technician has been dispatched to assist a sales person who cannot get his laptop to display through a projector. The technici
    13·1 answer
  • According to information found in an old hydraulies book, the energy loss per unit weight of fluid flowing through a nozzle conn
    6·1 answer
  • suppose we number the bytes in a w-bit word from 0 (less significant) to w/8-1 (most significant). write code for the followign
    11·1 answer
  • Determine F12 and F21 for the following configurations: (a) A long semicircular duct with diameter of 0.1 meters: (b) A hemisphe
    10·1 answer
  • Project 8:The Harris-Benedict equation estimates the number of calories your body needs to maintain your weight if you do no exe
    5·1 answer
  • The heat input to an Otto cycle is 1000kJ/kg. The compression ratio is 8 and the pressure and temperature at the beginning of th
    8·1 answer
  • True or False? Duties of the company officials should be discussed
    11·1 answer
  • A signalized intersection approach has three lanes with no exclusive left or right turning lanes. The approach has a 40-second g
    10·1 answer
  • An airplane flies horizontally at 80 m/s. Its propeller delivers 1300 N of thrust (forward force) to overcome aerodynamic drag (
    15·1 answer
  • A gas has an initial volume o.25m^3, and absolute pressure 100kPa. Its initial temperature is 290k. The gas is compressed into a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!