Explanation:
6a) Work = force × distance
W = Fd
W = (60 N) (10 m)
W = 600 J
6b) Change in energy = work
ΔKE = 600 J
7a) Kinetic energy is half the mass times the square of the velocity.
KE = ½ mv²
KE = ½ (0.4 kg) (25 m/s)²
KE = 125 J
7b) Work = change in energy. When the ball is stopped, it has zero kinetic energy.
W = ΔKE
W = 0 J − 125 J
W = -125 J
If the resistance of the Air is ignored, we can use the theory given by Galileo in which he warned that the thermal velocity of a body in free fall was given by

Where
g = Gravitational acceleration
t = time
As we can see the speed of objects in free fall is indifferent to the position that is launched (as long as the resistance of the air is ignored) or its mass.
Both bodies will end with the same thermal speed.
Answer:
a) The x coordinate of the third mass is -1.562 meters.
b) The y coordinate of the third mass is -0.944 meters.
Explanation:
The center of mass of a system of particles (
), measured in meters, is defined by this weighted average:
(1)
Where:
- Mass of the i-th particle, measured in kilograms.
- Location of the i-th particle with respect to origin, measured in meters.
If we know that
,
,
,
,
and
, then the coordinates of the third particle are:




a) The x coordinate of the third mass is -1.562 meters.
b) The y coordinate of the third mass is -0.944 meters.
Answer:
Simple harmonic motion is repetitive. The period T is the time it takes the object to complete one oscillation and return to the starting position. ... If at t = 0 the object has its maximum displacement in the positive x-direction, then φ = 0, if it has its maximum displacement in the negative x-direction, then φ = π.
Explanation:
Simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side