If the velocity of the train is v=s/t, where s is the distance and t is time, then v=400/5=80m/s. To get the vertical component of the velocity we need to multiply the velocity v with a sin(α): Vv=v*sin(α), where Vv is the vertical component of the velocity and α is the angle with the horizontal. So:
Vv=80*sin(10)=80*0.1736=13.888 m/s.
So the vertical component of the velocity of the train is Vv=13.888 m/s.
The force that opposes motion to moving parts is F<span>riction</span><span>
Hope this helped!
</span>
C. The force is a constant change, because her position on the Ferris wheel will constantly change. I believe this is the answer, but use sources to double check. I might use different vocab. then your teachers.
m = mass of the penny
r = distance of the penny from the center of the turntable or axis of rotation
w = angular speed of rotation of turntable
F = centripetal force experienced by the penny
centripetal force "F" experienced by the penny of "m" at distance "r" from axis of rotation is given as
F = m r w²
in the above equation , mass of penny "m" and angular speed "w" of the turntable is same at all places. hence the centripetal force directly depends on the radius .
hence greater the distance from center , greater will be the centripetal force to remain in place.
So at the edge of the turntable , the penny experiences largest centripetal force to remain in place.