The molar mass of a, b and c at STP is calculated as below
At STP T is always= 273 Kelvin and ,P= 1.0 atm
by use of ideal gas equation that is PV =nRT
n(number of moles) = mass/molar mass therefore replace n in the ideal gas equation
that is Pv = (mass/molar mass)RT
multiply both side by molar mass and then divide by Pv to make molar mass the subject of the formula
that is molar mass = (mass x RT)/ PV
density is always = mass/volume
therefore by replacing mass/volume in the equation by density the equation
molar mass=( density xRT)/P where R = 0.082 L.atm/mol.K
the molar mass for a
= (1.25 g/l x0.082 L.atm/mol.k x273k)/1.0atm = 28g/mol
the molar mass of b
=(2.86g/l x0.082L.atm/mol.k x273 k) /1.0 atm = 64 g/mol
the molar mass of c
=0.714g/l x0.082 L.atm/mol.K x273 K) 1.0atm= 16 g/mol
therefore the
gas a is nitrogen N2 since 14 x2= 28 g/mol
gas b =SO2 since 32 +(16x2)= 64g/mol
gas c = methaneCH4 since 12+(1x4) = 16 g/mol
Answer:
NH3 < NF3 < BCl3
Explanation:
The vapour pressure of a substance has something to do with the nature of intermolecular forces between its molecules. If the molecules of a substance are held together by strong intermolecular forces, the substance will display a low vapour pressure at a given temperature and vice versa.
Ammonia has the lowest vapour pressure because of strong intermolecular hydrogen bonds that hold its molecules together.
Answer:
6.0221409e+23
Explanation:
The number of molecules in a mole of any substance is Avogadro's number, 6.0221409e+23.
Write the equation for the reaction and balance it. In this case the equation is: 2NaOH + H2SO4 → Na2SO4 + 2H2O
Convert the given amount to moles. Molarity, “M” is moles per liter. The given amount is 25 ml of 1.2 M H2SO4. Since Molarity uses Liters, the volume must be converted from ml to L.
Use the mole ratio in this case 2 moles of NaOH to ! mole of H2SO4
Convert the moles to the required units. In this case the required units are grams. The formula weight in grams er mole.
25 ml H2SO4 * 1L/1000 ml * 1.2 Moles/L * 2 moles NaOH/1 mole H2SO4 * 40 g NaOH/ 1 Mole NaOH
Perform these calculations and you have the answer! Timothy, When doing homework, the answer is NOT the important thing, the METHOD is! These 4 steps, combined with required changes in units will sove ANY stoichiometric problem easily.
Answer:
Therefore, the value of K_{p} is 2 \times 10^{9} and value of \Delta G^{o} is -53.2 kJ/mol.
Explanation: