(a)
consider the motion of the tennis ball. lets assume the velocity of the tennis ball going towards the racket as positive and velocity of tennis ball going away from the racket as negative.
m = mass of the tennis ball = 60 g = 0.060 kg
v₀ = initial velocity of the tennis ball before being hit by racket = 20 m/s
v = final velocity of the tennis ball after being hit by racket = - 39 m/s
ΔP = change in momentum of the ball
change in momentum of the ball is given as
ΔP = m (v - v₀)
inserting the above values
ΔP = (0.060) (- 39 - 20)
ΔP = - 3.54 kgm/s
hence , magnitude of change in momentum : 3.54 kgm/s
It does produce 'sound' ... a compression wave traveling through the air. But your ears don't hear a sound that's vibrating less than 20 or 30 times every second. If you could swing your pendulum that fast, you could hear the sound of its vibrations pushing the air around.
I believe it would be a musical note
Answer:
Vb = k Q / r r <R
Vb = k q / R³ (R² - r²) r >R
Explanation:
The electic potential is defined by
ΔV = - ∫ E .ds
We calculate the potential in the line of the electric pipe, therefore the scalar product reduces the algebraic product
VB - VA = - ∫ E dr
Let's substitute every equation they give us and we find out
r> R
Va = - ∫ (k Q / r²) dr
-Va = - k Q (- 1 / r)
We evaluate with it Va = 0 for r = infinity
Vb = k Q / r r <R
We perform the calculation of the power with the expression of the electric field that they give us
Vb = - int (kQ / R3 r) dr
We integrate and evaluate from the starting point r = R to the final point r <R
Vb = ∫kq / R³ r dr
Vb = k q / R³ (R² - r²)
This is the electric field in the whole space, the places of interest are r = 0, r = R and r = infinity
Distance = speed / time
speed = 95 m/s
time = 3 s
distance = 95 / 3 m
displacement = 95/3 m or 32 m (2 s.f.)