Answer:
Explanation:
I'm not sure you can do this without just a bit more information. I can tell you what the mass of the water is when the rocks are removed. When we know that, we know the volume of the water that was displaced. whether or not this is enough information to determine the volume of the box, I'm not sure.
400 grams raises the box 1 cm.
The density of water = 1 gm / cm^3
400 grams of water = 400 mL or 400 cm^3
The volume of the displaced water = 400 cm^3
The volume a slice from the square prism is B*h
B = 400 cm^2
h = 1 cm
If the base is 400 cm^2 then each side is
s^2 = 400
sqrt(s^2)= sqrt(400)
s = 20
The volume of the box is 20^3 = 8000 cm^3
Answer:
Both the astronauts and photographer have the same displacement
Explanation:
Displacement is the minimum distance between two point. The initial point of both the astronauts and the photographer was Florida and the final point was California. So, the minimum distance for both of the astronauts and the photographer would be the distance between Florida and California would be the same.
Hence, both the astronauts and photographer will have the same displacement.
Density: g/mL, kg/cubic meter
Volume: L, teaspoon
Mass: g, MeV/sq. C
Explanation:
Fluids exert both drag and lift forces on moving objects. Drag is the frictional force opposing motion. Lift is the force perpendicular to motion.
Some objects, like parachutes, are designed with large cross sectional areas to increase drag force. Usually though, objects are designed to minimize drag force. It's why cars, planes, and boats have sleek shapes.
Airplane wings have shapes called airfoils that generate lift. It's what makes them fly. The same shape is found in racecar spoilers. These spoilers use lift force to push down on the rear tires, increasing traction.