1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
m_a_m_a [10]
3 years ago
13

Energy is absorbed in discrete amounts.

Physics
1 answer:
Ray Of Light [21]3 years ago
8 0

Answer: The correct answer is 912 A

You might be interested in
How much heat will be needed to warm 187 grams of water from 10 0C to 90 0C?
kvv77 [185]
<h3>Hello there!</h3>

Here, you are looking for the amount of heat put in for water, at a mass of 187 grams, to change by 80 degrees.

The equation commonly accepted to find the answer to questions like these is the specific heat formula.

The equation is Q = mc∆T, where Q is the amount of energy put in to raise the temperature by a certain amount, m is the mass, c is the specific heat capacity, and ΔT is the amount of temperature change.

The information given:

m = 187 grams

c = specific heat capacity of water, or in this case 1 calorie, or 4.184 joules (which is what we will be using)

ΔT = 80 degrees

Now just plug everything in to solve.

Q = 187 * 4.184 * 80

Q = 62592.64

So you have your answer: 62592.64 joules.

Hope this helped!

5 0
3 years ago
Activity
vodka [1.7K]
Your welcome LOL plz like

5 0
3 years ago
In 1999, Robbie Knievel was the first to jump the Grand Canyon on a motorcycle. At a narrow part of the canyon (65 m wide) and t
vfiekz [6]

Answer:

His launching angle was 14.72°

Explanation:

Please, see the figure for a graphic representation of the problem.

In a parabolic movement, the velocity and displacement vectors are two-component vectors because the object moves along the horizontal and vertical axis.

The horizontal component of the velocity is constant, while the vertical component has a negative acceleration due to gravity. Then, the velocity can be written as follows:

v = (vx, vy)

where vx is the component of v in the horizontal and vy is the component of v in the vertical.

In terms of the launch angle, each component of the initial velocity can be written using the trigonometric rules of a right triangle (see attached figure):

sin angle = opposite / hypotenuse

cos angle = adjacent / hypotenuse

In our case, the side opposite the angle is the module of v0y and the side adjacent to the angle is the module of vx. The hypotenuse is the module of the initial velocity (v0). Then:

sin angle = v0y / v0  then: v0y = v0 * sin angle

In the same way for vx:

vx = v0 * cos angle

Using the equation for velocity in the x-axis we can find the equation for the horizontal position:

dx / dt = v0 * cos angle

dx = (v0 * cos angle) dt (integrating from initial position, x0, to position at time t and from t = 0 and t = t)

x - x0 = v0 t cos angle

x = x0 + v0 t cos angle

For the displacement in the y-axis, the velocity is not constant because the acceleration of the gravity:

dvy / dt = g ( separating variables and integrating from v0y and vy and from t = 0 and t)

vy -v0y = g t

vy = v0y + g t

vy = v0 * sin angle + g t

The position will be:

dy/dt = v0 * sin angle + g t

dy = v0 sin angle dt + g t dt (integrating from y = y0 and y and from t = 0 and t)

y = y0 + v0 t sin angle + 1/2 g t²

The displacement vector at a time "t" will be:

r = (x0 + v0 t cos angle, y0 + v0 t sin angle + 1/2 g t²)

If the launching and landing positions are at the same height, then the displacement vector, when the object lands, will be (see figure)

r = (x0 + v0 t cos angle, 0)

The module of this vector will be the the total displacement (65 m)

module of r = \sqrt{(x0 + v0* t* cos angle)^{2} }  

65 m = x0 + v0 t cos angle ( x0 = 0)

65 m / v0 cos angle = t

Then, using the equation for the position in the y-axis:

y = y0 + v0 t sin angle + 1/2 g t²

0 =  y0 + v0 t sin angle + 1/2 g t²

replacing t =  65 m / v0 cos angle and y0 = 0

0 = 65m (v0 sin angle / v0 cos angle) + 1/2 g (65m / v0 cos angle)²  

cancelating v0:

0 = 65m (sin angle / cos angle) + 1/2 g * (65m)² / (v0² cos² angle)

-65m (sin angle / cos angle) = 1/2 g * (65m)² / (v0² cos² angle)  

using g = -9.8 m/s²

-(sin angle / cos angle) * (cos² angle) = -318.5 m²/ s² / v0²

sin angle * cos angle = 318.5 m²/ s² / (36 m/s)²

(using trigonometric identity: sin x cos x = sin (2x) / 2

sin (2* angle) /2 = 0.25

sin (2* angle) = 0.49

2 * angle = 29.44

<u>angle = 14.72°</u>

3 0
3 years ago
A train travels 8.81 m/s in a -51.0° direction.
Amiraneli [1.4K]

The displacement of the train after 2.23 seconds is 25.4 m.

<h3>Resultant velocity of the train</h3>

The resultant velocity of the train is calculated as follows;

R² = vi² + vf² - 2vivf cos(θ)

where;

  • θ is the angle between the velocity = (90 - 51) + 37 = 76⁰

R² = 8.81² + 9.66² - 2(8.81 x 9.66) cos(76)

R² = 129.75

R = √129.75

R = 11.39 m/s

<h3>Displacement of the train</h3>

Δx = vt

Δx = 11.39 m/s x 2.23 s

Δx = 25.4 m

Thus, the displacement of the train after 2.23 seconds is 25.4 m.

Learn more about displacement here: brainly.com/question/2109763

#SPJ1

8 0
2 years ago
What happens to a sheet of copper as kinetic energy of copper molecules decrease
liberstina [14]
First is melts then it expands next it gets cooler Finally it gains ener. Hope this helps you out.
8 0
4 years ago
Other questions:
  • Floating piece of wood - buoyancy question.?
    15·1 answer
  • Sully is riding a snowmobile on a flat, snow-covered surface with a constant velocity of 10 meters/second. The total mass of the
    10·2 answers
  • What is the cost of conserved energy for compact fluorescent lighting?
    15·1 answer
  • A wire carrying a current of 10 A and 2 m in length is placed in a field of flux density 0.15 T. What’s the force on the wire if
    5·1 answer
  • You are a surgeon operating on a broken bone. You find a large area, swollen with blood, that surrounds the break site. What is
    12·2 answers
  • Two charges A and B are fixed in place, at different distances from a certain spot. At this spot the potentials due to the two c
    14·1 answer
  • Macy and Sam are trying to push a large box across a floor. Both girls push with an equal amount of force. The total amount they
    5·1 answer
  • Spaceship 1 and Spaceship 2 have equal masses of 200 kg. Spaceship 1 has a speed of 0 m/s, and Spaceship 2 has a speed of 6 m/s.
    6·1 answer
  • The skateboarder weighs 75 kilogram. Calculate the potential energy of the skateboarder sliding on the track when his height abo
    11·2 answers
  • A soccer player kicks a ball at rest on the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!