1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
2 years ago
8

Understanding the theory of plate tectonics can help people better understand Earth's movements. How can knowledge of plate tect

onics help people living in areas prone to earthquakes and volcanic eruptions?
Chemistry
1 answer:
Anettt [7]2 years ago
4 0
The knowledge of plate tectonics help people living in areas prone to earthquakes and volcanic eruptions can help by knowing the chances of the earthquake or volcanic eruption
You might be interested in
Name the process which takes place when
Lady_Fox [76]

Explanation:

Chlorine gas bleaches the damp litmus (red or blue). Bleaching is an oxidation process.

5 0
2 years ago
Read 2 more answers
What is the mass in grams of 1.204x10^24 atoms of carbon
Mekhanik [1.2K]
It should be 24g of carbon
4 0
2 years ago
Calculate the energy (in kj/mol) required to remove the electron in the ground state for each of the following one-electron spec
Bess [88]

Explanation:

E_n=-13.6\times \frac{Z^2}{n^2}ev

where,

E_n = energy of n^{th} orbit

n = number of orbit

Z = atomic number

a) Energy change due to transition from n = 1 to n = ∞ ,hydrogen atom .

Z = 1

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{1^2}{1^2}eV=-13.6 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{1^2}{(\infty)^2}eV=0

Let energy change be E for 1 atom.

E=E_{\infty}-E_1=0-(-13.6  eV)=13.6 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 13.6 eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 13.6 \times 1.60218\times 10^{-22} kJ/mol

E'=1,312.17 kJ/mol

The energy  required to remove the electron in the ground state is 1,312.17 kJ/mol.

b) Energy change due to transition from n = 1 to n = ∞ ,B^{4+} atom .

Z = 5

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{5^2}{1^2}eV=-340 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{5^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-340eV)=340 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 340eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 340\times 1.60218\times 10^{-22} kJ/mol

E'=32,804.31 kJ/mol

The energy  required to remove the electron in the ground state is 32,804.31 kJ/mol.

c) Energy change due to transition from n = 1 to n = ∞ ,Li^{2+}atom .

Z = 3

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{3^2}{1^2}eV=-122.4 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{3^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-122.4 eV)=122.4 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 122.4 eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 122.4\times 1.60218\times 10^{-22} kJ/mol

E'=11,809.55 kJ/mol

The energy  required to remove the electron in the ground state is 11,809.55 kJ/mol.

d) Energy change due to transition from n = 1 to n = ∞ ,Mn^{24+}atom .

Z = 25

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{25^2}{1^2}eV=-8,500 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{25^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-8,500 eV)=8,500 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 8,500eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 8,500 \times 1.60218\times 10^{-22} kJ/mol

E'=820,107.88 kJ/mol

The energy  required to remove the electron in the ground state is 820,107.88 kJ/mol.

4 0
3 years ago
Learn how changes in binding free energy affect binding and the ratio of unbound and bound molecules.
Delvig [45]

C)[D]/[ED] = 5.20

D)[D]/[ED] = 5.20

E)[D']_T = 1.495* 10 ^-7 M

F)[D'] / [ED']  = 0.0579

Explanation:

E = 250 nM =2.5* 10 ^-7 mol/L , T=298.15 K

Dissociation constant of K_D = 1.3 μM (1.3 *10 ^-6 M)

E + D ⇄ ED → K_a = [ED] / [D][E]   (association constant)

ED ⇄ E + D → K_D = [E][D] / [ED]  (dissociation constant)

C)

[E] =2.5*10^-7 mol/L

K_D = 1.3* 10^-6 M

K_D = [E][D] / [ED] → [D]/[ED] = K_D / [E]

= [D]/[ED] = 1.3* 10 ^-6 / 2.5 *10^-7

= 13/25 * 10

=130/25 = 5.20

[D]/[ED] = 5.20

D)

ΔG =RTln Kd

ΔG_2 for E and D = 1.987 * 298.15 * ln 1.3*10^-6

ΔG_2 592.454 * [ln 1.3 +ln 10^-6]

ΔG_1 = 592.424 [0.2623 - 13.8155]

ΔG_2 = -592.424 * 13.553

ΔG_1 = -8184.633 cal/ mol

ΔG_1 = -8184.633  * 4.18 J/mol = -34244.508 J?mol

ΔG_1 = -34.245 KL/mol

so, ΔG_2 = ΔG_1 - 10.5 KJ/mol

ΔG_2 = -34.245 - 10.5

ΔG_2 = -44.745KJ / mol

ΔG_2 =RT ln K_D

-44.745 *10^3

=8.314 *298.15 lnK_D

lnK_D' = - 44745 / 2478.81 g

ln K_D' = -18.051

K_D' = -18.051

K_D' = e^-18.051

[D]/[ED] = 5.20

E)

[E] = 2.5* 10 ^-7 mol/ L = a

K_D' = [E][D] / [ED']                                  E +D' → ED'

K_D' = a/2(x-(a/2) / (a/2)

KD' = x - a/2

=2.447 *10^-8 = (2.5/2) * 10^-7

x=2.447 * 10^-8 + 1.25 * 10^-7

x = 2.447 *10^-8 + 1.25 * 10 ^-7

x= 10^-7 [1.25 + 0.2447]

x = 1.4947 * 10^-7

[D']_T = 1.495* 10 ^-7 M

F)

K_D' = [E][D'] / [ED']

[D'] / [ED'] = KD' / [E]

[D'] / [ED'] = 1.447 *10^-8 / 2.5* 10^-7

[D'] / [ED'] = 0.5788 * 10^-1

[D'] / [ED']  = 0.0579

5 0
3 years ago
Select the missing words to complete the definition of buffer capacity. Buffer capacity is the _____________ of acid or base a b
horsena [70]

Answer:

amount, pH value.

Explanation:

The buffer range is the pH range in which the buffer performs optimally, i.e., neutralizes even when a strong acid or base is introduced to it and resists any major change in its pH value.

The buffer capacity is the amount of acid or base that can be added before the pH of the buffer solution changes significantly.

Thus, the final statement becomes,

Buffer capacity is the amount of acid or base a buffer can handle before pushing the pH value outside of the buffer range.

8 0
2 years ago
Other questions:
  • Hydroelectric energy comes from
    7·2 answers
  • At what pH do you think acids become too dangerous to touch? Basis? Explain your answers.
    13·1 answer
  • What happens during a hurricane ??
    7·1 answer
  • The rate constant for the first-order decomposition of n2o is 3.40 s-1. what is the half-life of the decomposition?
    12·2 answers
  • A 200-gram sample of a radioactive nuclide is left to decay for 60 hours. At the end of 60 hours, only 25 grams of the sample is
    5·1 answer
  • If a car has a force of 490 N forward and encounters a backwards force of
    5·1 answer
  • What is the term for the concentration expression that relates the moles of solute dissolved in each liter of solution?
    14·1 answer
  • Help me with these two please​
    9·2 answers
  • Under what conditions will a gas be most likely to exhibit the ideal gas properties predicted by the ideal gas law?
    15·1 answer
  • At STP, 1 mole of gas has a molar volume of 22.4 L. What is the density (g/L) of oxygen at STP?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!