A) 1s on H and 3p on Cl
In HCl, the H atom has only one valance electron. Each share an electron an therefore a single covalent bond is formed between the two. The bond in HCl is therefore a result of an overlap between 1s orbital and ONLY ONE of the lobes of the 3p orbital of Chlorine.
Since you didn't give the actual volume (or any of the experimental values) I can only tell you how to do it. Do the calculation using the real (determined) volume of the flask. Then, re-do the calculation with v = 125ml. Take the two values and calculate % error; m = measured vol; g = guessed vol.
<span>[mW (m) - mW (g)]/mW (m) x 100% </span>
<span>(they want % error so, if it is negative, just get rid of the sign) </span>
Answer: a. The concentrations of the reactants and products have reached constant values
Explanation:
The reactions which do not go on completion and in which the reactant forms product and the products goes back to the reactants simultaneously are known as equilibrium reactions. For a chemical equilibrium reaction, equilibrium state is achieved when the rate of forward reaction becomes equal to rate of the backward reaction.
Equilibrium state is the state when reactants and products are present but the concentrations does not change with time and are constant.
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For a equilibrium reaction,

![K_{eq}=\frac{[B]}{[A]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
Thus the correct answer is the concentrations of the reactants and products have reached constant values.
Animal fibers are fibers from animals and consist mainly of protein. They contain not only silk fiber from silkworms and fur fiber from sheep wool but also collagen fiber extracted from animal skins, chitin from crustaceans, and shellfish like shrimp and chitosan made by deacetylating chitin.
Hydrogen .<span>carbon dioxide is CO2 and </span><span>glucose is C6H12O6</span>