1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
2 years ago
10

How are mechanical waves and electromagnetic waves alike?

Physics
2 answers:
miss Akunina [59]2 years ago
6 0

I got this answer from the internet

Mila [183]2 years ago
5 0
Answer: Electromagnetic waves can travel through a vacuum; mechanical waves require a medium. Electromagnetic waves are visible; mechanical waves are invisible. Electromagnetic waves always reflect; mechanical waves always refract.




Explanation: There are two types of waves:
Mechanical waves: these waves consist of oscillations of the particles in a medium. Therefore, they can only propagates if there is a medium. Examples of mechanical waves are sound waves
Electromagnetic waves: they consist of oscillations of the electric and the magnetic field in a plane perpendicular to the direction of motion the wave. All electromagnetic waves travel in a vacuum always at the same speed, the speed of light: . They are the only types of waves that do not require a medium to propagate, so they can also travel through a vacuum.
We can now analyze the different statements:
Both types of waves require a medium. --> FALSE. Electromagnetic waves do not require a medium.
Both types of waves have a frequency. --> TRUE. All waves are characterized by their frequency, which is the number of complete oscillations per second.
Both types of waves transmit matter. --> FALSE. Waves transmit energy, but not matter.
Both types of waves have a pitch --> FALSE. Pitch tells how we perceive the frequency of a sound wave: but electromagnetic waves are not sound waves, so this statement is false.
You might be interested in
Consider two thin, coaxial, coplanar, uniformly charged rings with radii a and b푏 (a
Wittaler [7]

Answer:

electric potential, V = -q(a²- b²)/8π∈₀r³

Explanation:

Question (in proper order)

Consider two thin coaxial, coplanar, uniformly charged rings with radii a and b (b < a) and charges q and -q, respectively. Determine the potential at large distances from the rings

<em>consider the attached diagram below</em>

the electric potential at point p, distance r from the center of the outer charged ring with radius a is as given below

Va = q/4π∈₀ [1/(a² + b²)¹/²]

Va = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} }

Also

the electric potential at point p, distance r from the center of the inner charged ring with radius b is

Vb = \frac{-q}{4\pi e0} * \frac{1}{(b^{2} + r^{2} )^{1/2} }

Sum of the potential at point p is

V = Va + Vb

that is

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } + \frac{-q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * [\frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{1}{(b^{2} + r^{2} )^{1/2} }]

the expression below can be written as the equivalent

\frac{1}{(a^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + a^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} }

likewise,

\frac{1}{(b^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + b^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }

hence,

V = \frac{q}{4\pi e0} * [\frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

1/r is common to both equation

hence, we have it out and joined to the 4π∈₀ denominator that is outside

V = \frac{q}{4\pi e0 r} * [\frac{1}{{(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

by reciprocal rule

1/a² = a⁻²

V = \frac{q}{4\pi e0 r} * [{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} - {(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2}]

by binomial expansion of fractional powers

where (1+a)^{n} =1+na+\frac{n(n-1)a^{2} }{2!}+ \frac{n(n-1)(n-2)a^{3}}{3!}+...

if we expand the expression we have the equivalent as shown

{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} = (1-\frac{a^{2} }{2r^{2} } )

also,

{(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2} = (1-\frac{b^{2} }{2r^{2} } )

the above equation becomes

V = \frac{q}{4\pi e0 r} * [((1-\frac{a^{2} }{2r^{2} } ) - (1-\frac{b^{2} }{2r^{2} } )]

V = \frac{q}{4\pi e0 r} * [1-\frac{a^{2} }{2r^{2} } - 1+\frac{b^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * [-\frac{a^{2} }{2r^{2} } +\frac{b^{2} }{2r^{2} }]\\\\V = \frac{q}{4\pi e0 r} * [\frac{b^{2} }{2r^{2} } -\frac{a^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * \frac{1}{2r^{2} } *(b^{2} -a^{2} )

V = \frac{q}{8\pi e0 r^{3} } * (b^{2} -a^{2} )

Answer

V = \frac{q (b^{2} -a^{2} )}{8\pi e0 r^{3} }

OR

V = \frac{-q (a^{2} -b^{2} )}{8\pi e0 r^{3} }

8 0
3 years ago
3. Waxing means "growing." Waning means
Sonja [21]

Answer:

I think it is the last one.

Explanation:

I am not sure because i am stuck on this one, too.

4 0
3 years ago
Read 2 more answers
What is the period of a 4.12 m long pendulum?
lisov135 [29]
Using the equation for period length, you get an answer of about 4.1 seconds.
8 0
2 years ago
Which of the following statements is true about the scientific process?
KiRa [710]
The best and most correct answer among the choices provided by your question is the third choice or letter C.
<span>The statement "Your hypothesis must be testable." is true about the scientific process.


</span>I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
4 0
2 years ago
Do solar panels create enough energy to power the car throughout the day?
JulijaS [17]

Answer:

Yes, but only if it's sunny.

Explanation:

As you know, solar panels generate energy through the sun's rays of light (better known as sunlight). Therefore, as long as the sun is shining high in the sky, the car will generate electricity and be able to function. If this vehicle was only powered by solar panels, it would not function during the night, in cloudy areas, and/or in dark places (such as parking garages or home garages).

Hope this helps!

5 0
2 years ago
Other questions:
  • I have to draw a wave on a separate sheet of paper given the following measurements down below. I'm a bit confused, do I just us
    5·1 answer
  • A 11-inch candle is lit and burns at a constant rate of 0.9 inches per hour. Let t t represent the number of hours since the can
    7·1 answer
  • Leaves uses_,_and_to make food for the plant​
    10·2 answers
  • What is in the boron family with 3 valence electrons
    13·1 answer
  • Describe the role of minerals in the formation of rocks
    8·1 answer
  • Do all of our scientific instruments have a limit on how precise they can make a measurement?
    14·1 answer
  • A tube with a cap on one end, but open at the other end, has a fundamental frequency of 130.8 Hz. The speed of sound is 343 m/s
    6·1 answer
  • To the speaker makes the sound louder.
    13·1 answer
  • 2. Summarize how the force of gravity
    13·1 answer
  • All 2023 ariya ac synchronous drive motors produce ____% torque at 0 mph for impressive off-the-line acceleration and smooth cru
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!