Answer:
4-oxopentanoic acid.
Explanation:
In this case, we must remember that the Grignard reaction is a reaction in which <u>carbanions</u> are produced. Carboanions have the ability to react with CO2 to generate a new C-C bond and a carboxylate ion. Finally, the acid medium will protonate the carboxylate to produce the <u>carboxylic acid group.
</u>
The molecules that can follow the mechanism described above are the molecules: p-methylbenzoic acid, cyclopentane carboxylic acid and 3-methylbutanoic acid. (See figure 1)
In the case of <u>4-oxopentanoic acid</u>, the possible carbanion <u>will attack the carbonyl group</u> to generate a cyclic structure and an alcohol group (1-methylcyclopropan-1-ol). Therefore, this molecule cannot be produced by this reaction. (See figure 2)
Make a ball of clay and embed small beads throughout it. The plum pudding model.
Answer:
Explanation:
In organic chemistry, the reaction between 2-butanol with TsCl and Et3N is known as the tosylation of the alcohol hydroxyl group. Alcohol is being changed to tosylate by the use of tosyl chloride under the influence of a base. Tosylation of alcohol is an example of a nucleophilic substitution reaction. From the image attached below, we will see how the reaction between 2-butanol proceed into the product by using tosyl chloride and a base(Et3N).
Answer:
![\frac{[magenta\ phenolphthalein]}{[colorless\ phenolphthalein]}=31.62](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%5C%20phenolphthalein%5D%7D%7B%5Bcolorless%5C%20phenolphthalein%5D%7D%3D31.62)
Explanation:
Considering the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution as:
Where Ka is the dissociation constant of the acid.
pKa of phenolphthalein = 9.40
pH = 10.9
So,
![\frac{[magenta\ phenolphthalein]}{[colorless\ phenolphthalein]}=31.62](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%5C%20phenolphthalein%5D%7D%7B%5Bcolorless%5C%20phenolphthalein%5D%7D%3D31.62)