2 C₃H₇OH (l) + 9 O₂ (g) → 6 CO₂ (g) + 8 H₂O (g)
Explanation:
To balance the chemical equation the number of atoms of each element entering the reaction have to be equal to the number of atoms of each element leaving the reaction, in order to conserve the mass.
Bellow we have the balanced chemical equation of the complete combustion of C₃H₇OH:
C₃H₇OH (l) + (9/2) O₂ (g) → 3 CO₂ (g) + 4 H₂O (g)
to have integer coefficients we multiply the reaction with 2:
2 C₃H₇OH (l) + 9 O₂ (g) → 6 CO₂ (g) + 8 H₂O (g)
where:
(l) - liquid
(g) - gaseous
Learn more about:
combustion reaction
brainly.com/question/9425444
balancing chemical equations
brainly.com/question/13941483
#learnwithBrainly
Answer: released to; absorbed from
- In an exothermic reaction, energy is released to the surroundings.
- In an endothermic reaction, energy is absorbed from the surroundings.
Explanation:
An exothermic reaction is a chemical reaction that occurs spontaneously and brings about the release of energy to the surroundings. Hence, the reacting vessel feels hot as the reaction proceeds.
An endothermic reaction, on the other hand, does not occur spontaneously and proceed only when energy is absorbed from the surroundings. Hence, the reacting vessel feels cold as the reaction proceeds.
Two molecules that can cross a lipid bilayer without help from membrane proteins are oxygen and carbon dioxide. The property that allows this to happen is that both oxygen and carbon dioxide molecules are nonpolar which means that they can pass easily through the hydrophobic part of the membrane. The lipid bilayer is present in all cell membranes. It consists of two layers of the fat cells which are arranged into two sheets. It functions as a barrier which marks the boundaries of the cell. The inner part of a lipid bilayer is nonpolar since it is composed of the hydrophobic end of the phospholopids.