Answer:
2.03 x 10²⁴N
Explanation:
Given parameters:
Mass of moon = 7.34 x 10²²kg
Mass of the earth = 5.97 x 10²⁴kg
Distance = 3.8 x 10⁵km
Unknown:
Gravitational force of attraction = ?
Solution:
To find the gravitational force of attraction between the masses, we use the expression below;
F =
G is the universal gravitation constant
m is the mass
1 and 2 represents moon and earth
r is the distance
F =
F =
= 2.03 x 10²⁴N
<h3><u>Answer</u>;</h3>
= F0 L ( 1 - 1/e )
<h3><u>Explanation;</u></h3>
Work done is given as the product of force and distance.
In this case;
Work done = ∫︎ F(x) dx
= F0 ∫︎ e^(-x/L) dx
= F0 [ -L e^(-x/L) ] between 0 and L
= F0 L ( 1 - 1/e )
Answer:
19.08 m/s
Explanation:
f = actual frequency emitted by the parked car's horn = 440 Hz
V = speed of sound = 342 m/s
f' = frequency of the horn observed by you = 466 Hz
v = speed of your car moving towards the parked car = ?
frequency of the horn observed by you is given as


v = 19.08 m/s
Answer:
100 newton
Explanation:
newton third law of motion says to every action there is an always an equal and opposite reaction so the magnitude will stay equal but opposite direction
Mass (m)=55kg
acceleration (a)=9.81 m/s^2, this is the acceleration due to gravity.
initial velocity=0m/s. The skydiver doesn’t start with any speed because she is on the plane or helicopter.
final velocity=16m/s This is the velocity (speed) the skydiver reaches
The equation we use is KE=.5mv^2
Kinetic energy=.5 mass x velocity^2
KE=.5(55kg)(16m/s)^2
KE=.5(55kg)(256m/s)
KE=.5(14080J)
J=Joules
KE=7040J
Kinetic energy is 7040 Joules (J)
Hope this helps