Answer:
25.45 Liters
Explanation:
Using Ideal Gas Law PV = nRT => V = nRT/P
V = (1mole)(0.08206Latm/molK)(298K)/(1atm) = 25.45 Liters
Answer:
ΔS = -661.0J/mol is the entropy change for the system
ΔS = -842J/mol.K is the entropy change for the surroundings
Explanation:
From the relationship between ΔG, T, ΔH and ΔS,
Mathematically, ΔG = ΔH - TΔS
TΔS = ΔH - ΔS
ΔS = ΔH - ΔS / T
but ΔG = -54 kJ/mol, ΔH = -251 kJ/mol and T = 25 °C (298 K)
plugging into the equation,
ΔS = -251 kJ/mol - ( -54 kJ/mol) / 298
ΔS = -0.6610KJ/mol or in J.mol
ΔS = -661.0J/mol is the entropy change for the system
- For entropy change for the surroundings = ΔS = ΔH/T
- ΔS = -0.84KJ/mol.K or -842J/mol.K is the entropy change for the surroundings
A = Z + n
A = 12 + 10
A = 22
Answer C
hope this helps!
Answer:
The answer remains the same. The total amount of energy stays the same because the 1st Law of Thermodynamics states that energy can neither be created nor destroyed, it can only change forms. So the chemical energy is just being converted into heat and light.
Explanation:
hope this helps...
An inter-molecular power is basically an alluring power between neighboring particles. There are three regular sorts of inter-molecular power: lasting dipole-dipole powers, hydrogen bonds and van der Waals' powers.