Answer:
The rate of heat removed from inside the refrigerator is 300 watts.
Explanation:
By the First Law of Thermodynamics and the definition of a Refrigeration Cycle, we have the following formula to determine the rate of heat removed from inside the refrigerator (
), in watts:
(1)
Where:
- Rate of heat released to the room, in watts.
- Rate of electric energy needed by the refrigerator, in watts.
If we know that
and
, then the rate of heat removed from inside the refrigerator is:


The rate of heat removed from inside the refrigerator is 300 watts.
By definition we have that
force=dP/dt,
where
p is momentum
so
<span>momentum is force*time
p= 15*3 = 45 Ns , west.
</span><span>the change in momentum of the object is 45 N.s</span>
<span>This pivot is called refraction. It happens because different materials have different densities. The more dense the material the more atoms the light collides with and the slower it travels; the less dense, the fewer the collisions and hence a faster velocity. This pivoting, or refraction, is caused by the light either slowing down or speeding up.</span>
Answer:
The correct answer is option 'c': 30 AUs
Explanation:
For a spherical wave front emitted by sun with total energy 'E' the energy density over the surface when it is at a distance 'r' from the sun is given by

This energy per unit area is sensed by observer as intensity of the sun.
Let the initial intensity of sun at a distance
be 
Thus if the sun becomes 900 times dimmer we have

Thus the distance increases 30 times.