The phase diagram of CO2 has a melting curve that slopes up and to the right, in contrast to the phase diagram of water, which has a more conventional shape. It is impossible for liquid CO2 to exist at pressures lower than 5.11 atm because the triple point is 5.11 atm and 56.6 °C.
Due to the fact that ice is less thick than liquid water, the phase diagram of water has an odd melting point that drops with pressure. Carbon dioxide cannot exist as a liquid at atmospheric pressure, according to the phase diagram of the gas. Thus, gaseous carbon dioxide directly sublimes from solid carbon dioxide.
Learn more about solid carbon dioxide.
brainly.com/question/16894647
#SPJ4
Cryo-EM is used to preserve and characterize cycled positive electrodes. Under regular cycling conditions, there isn't an intimate coating layer like CEI.A small electrical short can cause a stable conformal CEI to form in place. The conformal CEI's chemistry is revealed by EELS and cryo-(S)TEM.
It has been assumed that the intimate coating layer generated on the positive electrode, known as cathode electrolyte interphase (CEI), is crucial. However, there are still numerous questions about CEI. This results from the absence of useful instruments to evaluate the chemical and structural characteristics of these delicate interphases at the nanoscale. Here, using cryogenic electron microscopy, we establish a methodology to maintain the natural condition and directly see the interface on the positive electrode.
Learn more about Cathode electrolyte interphase here:
brainly.com/question/861659
#SPJ4
Answer:
The answer is combustion.
Answer:
1.26*10²³ particles are present in 12.47 grams of NaCl
Explanation:
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023 * 10²³ particles per mole. The Avogadro number applies to any substance.
So, first of all you must know the amount of moles that represent 12.47 grams of NaCl. For that it is necessary to know the molar mass.
You know:
- Na: 23 g/mole
- Cl: 35.45 g/mole
So the molar mass of NaCl is: 23 g/mole + 35.45 g/mole= 58.45 g/mole
Now you apply a rule of three as follows: if 58.45 grams are present in 1 mole of NaCl, 12.47 grams in how many moles will they be?

moles= 0.21
You apply a rule of three again, knowing Avogadro's number: if in 1 mole of NaCl there are 6,023 * 10²³ particles, in 0.21 moles how many particles are there?

number of particles= 1.26*10²³
<u><em>1.26*10²³ particles are present in 12.47 grams of NaCl</em></u>
<u><em></em></u>