when the thermal energy is the energy contained within a system that is responsible for its temperature.
and when the thermal energy is can be determined by this formula:
q = M * C *ΔT
when q is the thermal energy
and M is the mass of water = 100 g
and C is the specific heat capacity of water = 4.18 joules/gram.°C
and T is the difference in Temperature = 50 °C
So by substitution:
∴ q = 100 g * 4.18 J/g.°C * 50
= 20900 J = 20.9 KJ
Answer:
3.07 Cal/g
Explanation:
Step 1: Calculate the heat absorbed by the calorimeter
We will use the following expression.
Q = C × ΔT
where,
- C: heat capacity of the calorimeter (37.60 kJ/K = 37.60 kJ/°C)
- ΔT: temperature change (2.29 °C)
Q = 37.60 kJ/°C × 2.29 °C = 86.1 kJ
According to the law of conservation of energy, the heat released by the candy has the same magnitude as the heat absorbed by the calorimeter.
Step 2: Convert 86.1 kJ to Cal
We will use the conversion factor 1 Cal = 4.186 kJ.
86.1 kJ × 1 Cal/4.186 kJ = 20.6 Cal
Step 3: Calculate the number of Cal per gram of candy
20.6 Cal/6.70 g = 3.07 Cal/g
I believe Erosion is the process most likely responsible for the removal of the missing parts of the rock layers. Erosion involves the physical action of surface processes that removes soil, rock, or dissolved material from one location on the Earth's crust, then moved away to another location.
The product of the nuclear reaction in which 31p is subjected to neutron capture followed by alpha emission is ²⁸Al.
Nuclear
reaction: ³¹P + n° → ²⁸Al + α (alpha particle).<span>
Alpha decay is radioactive decay in which an atomic
nucleus emits an alpha particle (helium nucleus) and transforms
into an atom with an atomic number that is reduced by
two and mass number that is reduced by four.</span>
Answer:
A
Explanation:
molarity=moles of solute/liter of solution
molarity=0.26/0.3
molarity=0.87molar