Answer:
The orbital speed is approximately 17,325.57 m/s
The number of Earth days it would take lo to complete its orbit is approximately 1.77 days
Explanation:
The given parameters are;
The mass of lo, m ≈ 7.22 × 10²² kg
The radius of lo, R ≈ 1.82 × 10⁶ m
The mean distance between Jupiter and lo = 4.22 × 10⁸ m
The orbital equation is given as follows;
![\dfrac{m \cdot v^2}{R} = \dfrac{G \times M \times m}{R^2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bm%20%5Ccdot%20v%5E2%7D%7BR%7D%20%3D%20%5Cdfrac%7BG%20%5Ctimes%20M%20%5Ctimes%20m%7D%7BR%5E2%7D)
![\therefore v = \sqrt{\dfrac{G \cdot M}{R} } = \sqrt{\dfrac{ 6.67408 \times 10^{-11} \times 1.898 \times 10^{27}}{4.22 \times 10^8} } = 17,325.57 \ m/s](https://tex.z-dn.net/?f=%5Ctherefore%20v%20%3D%20%5Csqrt%7B%5Cdfrac%7BG%20%5Ccdot%20M%7D%7BR%7D%20%7D%20%3D%20%5Csqrt%7B%5Cdfrac%7B%206.67408%20%5Ctimes%2010%5E%7B-11%7D%20%20%5Ctimes%201.898%20%5Ctimes%2010%5E%7B27%7D%7D%7B4.22%20%5Ctimes%2010%5E8%7D%20%7D%20%20%3D%2017%2C325.57%20%5C%20m%2Fs)
The orbital speed ≈ 17,325.57 m/s
The time to complete one orbit = (2 × π × 4.22 × 10⁸)/(17325.57) ≈ 153039.94 s
The time to complete one orbit ≈ 153039.94 s ≈ 1.77 days
The number of Earth days it would take lo to complete its orbit ≈ 1.77 days.