Can you take a screen shot im kind of lost on this
The correct answer is: [C]: "polar" .
_____________________________________________________
" Water " ; which is: " H₂O " ;
_____________________________________________________
is a:
_____________________________________________________
— polar; → {eliminate: "Choice [A]: "non-polar"} ;
→ {and consider: "Choice: [C]: "polar" } ;
— covalent; → {not "ionic"; eliminate: "Choice: [B]: "ionic"} ;
— uncharged; → {neutral compound; not "charged" —but "balanced"} ;
→ {Note: " H ⁺ , O ²⁻ ; → " H₂O " } ;
→ The "charges" balance/ cancel out.
→ {eliminate: "Choice: [D]: "charged" .}.
_______________________________________________________
— compound.
_______________________________________________________
The correct answer is: [C]: "polar" .
_______________________________________________________
The correct answer is c.
answer b is incorrect <span />
Answer:
what do you need help with .
Explanation:
?
This problem is providing information about possible causes whereby mussel shells are being eroded due to the acidity in the ocean. In such a way, it claims that more acidic oceans dissolve calcium carbonate in a faster way and produce hydrogen carbonate ions, and thus, a feasible explanation is required as well as a hypothesis according to the following choices:
a. Lower CO₂; this reduces the H₂CO₃ and increases the pH.
b. Add CO₃²⁻: this will add base and increase its concentration.
c. Add Ca²⁺: this will increase the precipitation rate of calcium carbonate (correct choice).
<h3>Equilibrium equations:</h3>
At first instance, we should recall the equilibrium equations that take place when acidic oceans dissolve calcium carbonate in a faster way:


<h3>Shifts from equilibrium:</h3>
Where we can see that the first choice is thoroughly discarded as the addition of CO₂ actually increases the ionizable carbonic acid (acidity). Moreover, the addition of CO₃²⁻ may also lead to the formation of more protons-releasing carbonic acid which also contributes to the acidity of the ocean.
<h3>Hypothesis:</h3>
Thereby, the correct condition that, for sure, contributes to the preservation of mussel shells will be the addition of Ca²⁺ and the hypothesis will be that it shifts the equilibrium towards the formation of more CaCO₃, the active compound in these shells.
Learn more: