1 mole of any gas occupy 22.4 L at STP (standard temperature and pressure, 0°C and 1 atm).
Let given gases be 1 mole. So their volumes will be the same, 22.4 liters.
Density is the ratio of mass to volume.
By formula; density= mass/volume; d=m/V
To find out masses of gases, do the mole calculation.
By formula; mole= mass/molar mass; n= m/M; m= n*M
Molar masses are calculated as
1. C₂H₆ (ethane) = 2*12 g/mol + 6*1 g/mol= 30 g/mol
2. NO (nitrogen monoxide) = 1*14 g/mol + 1*16 g/mol= 30 g/mol
3. NH₃ (ammonia) = 1*14 g/mol + 3*1 g/mol= 17 g/mol
4. H₂O (water) = 2*1 g/mol + 1*16 g/mol= 18 g/mol
5. SO₂ (sulfur dioxide) = 1*32 g/mol + 2*16 g/mol= 64 g/mol
Use Periodic Table to get atomic mass of elements.
Since their volumes are equal, compounds having the same molar mass will have the same density.
Recall the formula d= m/V.
Ethane and nitrogen monoxide have the same density.
The answer is C₂H₆ and NO.
Answer:
congratulations you have made cocaine
ANSWER:
4 a) Specific elements have more than one oxidation state, demonstrating variable valency.
For example, the following transition metals demonstrate varied valence states:
,
,
, etc.
Normal metals such as
also show variable valencies. Certain non-metals are also found to show more than one valence state 
4 b) Isotopes are members of a family of an element that all have the same number of protons but different numbers of neutrons.
For example, Carbon-14 is a naturally occurring radioactive isotope of carbon, having six protons and eight neutrons in the nucleus. However, C-14 does not last forever and there will come a time when it loses its extra neutrons and becomes Carbon-12.
5 a)
→
5 b)
→ 
5 c)
→
(already balanced so don't need to change)
5 d)
→
5 e)
→ 
EXPLANATION (IF NEEDED):
1. Write out how many atoms of each element is on the left (reactant side) and right (product side) of the arrow.
2. Start multiplying each side accordingly to try to get atoms of the elements on both sides equal.
EXAMPLE OF BALANCING:
<span>C. 11.2 L
There are several different ways to solve this problem. You can look up the density of CO2 at STP and work from there with the molar mass of CO2, but the easiest is to assume that CO2 is an ideal gas and use the ideal gas properties. The key property is that a mole of an idea gas occupies 22.413962 liters. And since you have 0.5 moles, the gas you have will occupy half the volume which is
22.413962 * 0.5 = 11.20698 liters. And of the available choices, option "C. 11.2 L" is the closest match.
Note: The figure of 22.413962 l/mole is using the pre 1982 definition of STP which is a temperature of 273.15 K and a pressure of 1 atmosphere (1.01325 x 10^5 pascals). Since 1982, the definition of STP has changed to a temperature of 273.15 K and a pressure of exactly 10^5 pascals. Because of this lower pressure, one mole of an ideal gas will have the higher volume of 22.710947 liters instead of the older value of 22.413962 liters.</span>